This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a normed complex vector space." (Contributed by NM, 5-Jun-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isnv.1 | ⊢ 𝑋 = ran 𝐺 | |
| isnv.2 | ⊢ 𝑍 = ( GId ‘ 𝐺 ) | ||
| Assertion | isnv | ⊢ ( 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ NrmCVec ↔ ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ∧ 𝑁 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnv.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | isnv.2 | ⊢ 𝑍 = ( GId ‘ 𝐺 ) | |
| 3 | nvex | ⊢ ( 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ NrmCVec → ( 𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V ) ) | |
| 4 | vcex | ⊢ ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD → ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) ) | |
| 5 | 4 | adantr | ⊢ ( ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ∧ 𝑁 : 𝑋 ⟶ ℝ ) → ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) ) |
| 6 | 4 | simpld | ⊢ ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD → 𝐺 ∈ V ) |
| 7 | rnexg | ⊢ ( 𝐺 ∈ V → ran 𝐺 ∈ V ) | |
| 8 | 6 7 | syl | ⊢ ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD → ran 𝐺 ∈ V ) |
| 9 | 1 8 | eqeltrid | ⊢ ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD → 𝑋 ∈ V ) |
| 10 | fex | ⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑋 ∈ V ) → 𝑁 ∈ V ) | |
| 11 | 9 10 | sylan2 | ⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ) → 𝑁 ∈ V ) |
| 12 | 11 | ancoms | ⊢ ( ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ∧ 𝑁 : 𝑋 ⟶ ℝ ) → 𝑁 ∈ V ) |
| 13 | df-3an | ⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V ) ↔ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) ∧ 𝑁 ∈ V ) ) | |
| 14 | 5 12 13 | sylanbrc | ⊢ ( ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ∧ 𝑁 : 𝑋 ⟶ ℝ ) → ( 𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V ) ) |
| 15 | 14 | 3adant3 | ⊢ ( ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ∧ 𝑁 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) → ( 𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V ) ) |
| 16 | 1 2 | isnvlem | ⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V ) → ( 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ NrmCVec ↔ ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ∧ 𝑁 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) ) |
| 17 | 3 15 16 | pm5.21nii | ⊢ ( 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ NrmCVec ↔ ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ∧ 𝑁 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) |