This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a normal space, disjoint closed sets are separated by open sets. (Contributed by Jeff Hankins, 1-Feb-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nrmsep | ⊢ ( ( 𝐽 ∈ Nrm ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐷 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) → ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐽 ( 𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nrmtop | ⊢ ( 𝐽 ∈ Nrm → 𝐽 ∈ Top ) | |
| 2 | 1 | ad2antrr | ⊢ ( ( ( 𝐽 ∈ Nrm ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐷 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ∧ ( 𝑥 ∈ 𝐽 ∧ ( 𝐶 ⊆ 𝑥 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝐷 ) = ∅ ) ) ) → 𝐽 ∈ Top ) |
| 3 | elssuni | ⊢ ( 𝑥 ∈ 𝐽 → 𝑥 ⊆ ∪ 𝐽 ) | |
| 4 | 3 | ad2antrl | ⊢ ( ( ( 𝐽 ∈ Nrm ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐷 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ∧ ( 𝑥 ∈ 𝐽 ∧ ( 𝐶 ⊆ 𝑥 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝐷 ) = ∅ ) ) ) → 𝑥 ⊆ ∪ 𝐽 ) |
| 5 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 6 | 5 | clscld | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 7 | 2 4 6 | syl2anc | ⊢ ( ( ( 𝐽 ∈ Nrm ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐷 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ∧ ( 𝑥 ∈ 𝐽 ∧ ( 𝐶 ⊆ 𝑥 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝐷 ) = ∅ ) ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 8 | 5 | cldopn | ⊢ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) → ( ∪ 𝐽 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ∈ 𝐽 ) |
| 9 | 7 8 | syl | ⊢ ( ( ( 𝐽 ∈ Nrm ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐷 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ∧ ( 𝑥 ∈ 𝐽 ∧ ( 𝐶 ⊆ 𝑥 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝐷 ) = ∅ ) ) ) → ( ∪ 𝐽 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ∈ 𝐽 ) |
| 10 | simprrl | ⊢ ( ( ( 𝐽 ∈ Nrm ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐷 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ∧ ( 𝑥 ∈ 𝐽 ∧ ( 𝐶 ⊆ 𝑥 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝐷 ) = ∅ ) ) ) → 𝐶 ⊆ 𝑥 ) | |
| 11 | incom | ⊢ ( 𝐷 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) = ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝐷 ) | |
| 12 | simprrr | ⊢ ( ( ( 𝐽 ∈ Nrm ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐷 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ∧ ( 𝑥 ∈ 𝐽 ∧ ( 𝐶 ⊆ 𝑥 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝐷 ) = ∅ ) ) ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝐷 ) = ∅ ) | |
| 13 | 11 12 | eqtrid | ⊢ ( ( ( 𝐽 ∈ Nrm ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐷 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ∧ ( 𝑥 ∈ 𝐽 ∧ ( 𝐶 ⊆ 𝑥 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝐷 ) = ∅ ) ) ) → ( 𝐷 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) = ∅ ) |
| 14 | simplr2 | ⊢ ( ( ( 𝐽 ∈ Nrm ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐷 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ∧ ( 𝑥 ∈ 𝐽 ∧ ( 𝐶 ⊆ 𝑥 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝐷 ) = ∅ ) ) ) → 𝐷 ∈ ( Clsd ‘ 𝐽 ) ) | |
| 15 | 5 | cldss | ⊢ ( 𝐷 ∈ ( Clsd ‘ 𝐽 ) → 𝐷 ⊆ ∪ 𝐽 ) |
| 16 | reldisj | ⊢ ( 𝐷 ⊆ ∪ 𝐽 → ( ( 𝐷 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) = ∅ ↔ 𝐷 ⊆ ( ∪ 𝐽 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ) ) | |
| 17 | 14 15 16 | 3syl | ⊢ ( ( ( 𝐽 ∈ Nrm ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐷 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ∧ ( 𝑥 ∈ 𝐽 ∧ ( 𝐶 ⊆ 𝑥 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝐷 ) = ∅ ) ) ) → ( ( 𝐷 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) = ∅ ↔ 𝐷 ⊆ ( ∪ 𝐽 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ) ) |
| 18 | 13 17 | mpbid | ⊢ ( ( ( 𝐽 ∈ Nrm ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐷 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ∧ ( 𝑥 ∈ 𝐽 ∧ ( 𝐶 ⊆ 𝑥 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝐷 ) = ∅ ) ) ) → 𝐷 ⊆ ( ∪ 𝐽 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ) |
| 19 | 5 | sscls | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ ∪ 𝐽 ) → 𝑥 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) |
| 20 | 2 4 19 | syl2anc | ⊢ ( ( ( 𝐽 ∈ Nrm ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐷 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ∧ ( 𝑥 ∈ 𝐽 ∧ ( 𝐶 ⊆ 𝑥 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝐷 ) = ∅ ) ) ) → 𝑥 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) |
| 21 | 20 | ssrind | ⊢ ( ( ( 𝐽 ∈ Nrm ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐷 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ∧ ( 𝑥 ∈ 𝐽 ∧ ( 𝐶 ⊆ 𝑥 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝐷 ) = ∅ ) ) ) → ( 𝑥 ∩ ( ∪ 𝐽 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ) ⊆ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ ( ∪ 𝐽 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ) ) |
| 22 | disjdif | ⊢ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ ( ∪ 𝐽 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ) = ∅ | |
| 23 | sseq0 | ⊢ ( ( ( 𝑥 ∩ ( ∪ 𝐽 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ) ⊆ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ ( ∪ 𝐽 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ) ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ ( ∪ 𝐽 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ) = ∅ ) → ( 𝑥 ∩ ( ∪ 𝐽 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ) = ∅ ) | |
| 24 | 21 22 23 | sylancl | ⊢ ( ( ( 𝐽 ∈ Nrm ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐷 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ∧ ( 𝑥 ∈ 𝐽 ∧ ( 𝐶 ⊆ 𝑥 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝐷 ) = ∅ ) ) ) → ( 𝑥 ∩ ( ∪ 𝐽 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ) = ∅ ) |
| 25 | sseq2 | ⊢ ( 𝑦 = ( ∪ 𝐽 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) → ( 𝐷 ⊆ 𝑦 ↔ 𝐷 ⊆ ( ∪ 𝐽 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ) ) | |
| 26 | ineq2 | ⊢ ( 𝑦 = ( ∪ 𝐽 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) → ( 𝑥 ∩ 𝑦 ) = ( 𝑥 ∩ ( ∪ 𝐽 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ) ) | |
| 27 | 26 | eqeq1d | ⊢ ( 𝑦 = ( ∪ 𝐽 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) → ( ( 𝑥 ∩ 𝑦 ) = ∅ ↔ ( 𝑥 ∩ ( ∪ 𝐽 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ) = ∅ ) ) |
| 28 | 25 27 | 3anbi23d | ⊢ ( 𝑦 = ( ∪ 𝐽 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) → ( ( 𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ↔ ( 𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ ( ∪ 𝐽 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ∧ ( 𝑥 ∩ ( ∪ 𝐽 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ) = ∅ ) ) ) |
| 29 | 28 | rspcev | ⊢ ( ( ( ∪ 𝐽 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ∈ 𝐽 ∧ ( 𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ ( ∪ 𝐽 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ∧ ( 𝑥 ∩ ( ∪ 𝐽 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) ) = ∅ ) ) → ∃ 𝑦 ∈ 𝐽 ( 𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| 30 | 9 10 18 24 29 | syl13anc | ⊢ ( ( ( 𝐽 ∈ Nrm ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐷 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ∧ ( 𝑥 ∈ 𝐽 ∧ ( 𝐶 ⊆ 𝑥 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝐷 ) = ∅ ) ) ) → ∃ 𝑦 ∈ 𝐽 ( 𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
| 31 | nrmsep2 | ⊢ ( ( 𝐽 ∈ Nrm ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐷 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝐶 ⊆ 𝑥 ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∩ 𝐷 ) = ∅ ) ) | |
| 32 | 30 31 | reximddv | ⊢ ( ( 𝐽 ∈ Nrm ∧ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐷 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) → ∃ 𝑥 ∈ 𝐽 ∃ 𝑦 ∈ 𝐽 ( 𝐶 ⊆ 𝑥 ∧ 𝐷 ⊆ 𝑦 ∧ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |