This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subspace of a completely normal space is normal. (Contributed by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnrmi | ⊢ ( ( 𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉 ) → ( 𝐽 ↾t 𝐴 ) ∈ Nrm ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | restin | ⊢ ( ( 𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉 ) → ( 𝐽 ↾t 𝐴 ) = ( 𝐽 ↾t ( 𝐴 ∩ ∪ 𝐽 ) ) ) |
| 3 | oveq2 | ⊢ ( 𝑥 = ( 𝐴 ∩ ∪ 𝐽 ) → ( 𝐽 ↾t 𝑥 ) = ( 𝐽 ↾t ( 𝐴 ∩ ∪ 𝐽 ) ) ) | |
| 4 | 3 | eleq1d | ⊢ ( 𝑥 = ( 𝐴 ∩ ∪ 𝐽 ) → ( ( 𝐽 ↾t 𝑥 ) ∈ Nrm ↔ ( 𝐽 ↾t ( 𝐴 ∩ ∪ 𝐽 ) ) ∈ Nrm ) ) |
| 5 | 1 | iscnrm | ⊢ ( 𝐽 ∈ CNrm ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝒫 ∪ 𝐽 ( 𝐽 ↾t 𝑥 ) ∈ Nrm ) ) |
| 6 | 5 | simprbi | ⊢ ( 𝐽 ∈ CNrm → ∀ 𝑥 ∈ 𝒫 ∪ 𝐽 ( 𝐽 ↾t 𝑥 ) ∈ Nrm ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉 ) → ∀ 𝑥 ∈ 𝒫 ∪ 𝐽 ( 𝐽 ↾t 𝑥 ) ∈ Nrm ) |
| 8 | inss2 | ⊢ ( 𝐴 ∩ ∪ 𝐽 ) ⊆ ∪ 𝐽 | |
| 9 | inex1g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∩ ∪ 𝐽 ) ∈ V ) | |
| 10 | elpwg | ⊢ ( ( 𝐴 ∩ ∪ 𝐽 ) ∈ V → ( ( 𝐴 ∩ ∪ 𝐽 ) ∈ 𝒫 ∪ 𝐽 ↔ ( 𝐴 ∩ ∪ 𝐽 ) ⊆ ∪ 𝐽 ) ) | |
| 11 | 9 10 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ∩ ∪ 𝐽 ) ∈ 𝒫 ∪ 𝐽 ↔ ( 𝐴 ∩ ∪ 𝐽 ) ⊆ ∪ 𝐽 ) ) |
| 12 | 8 11 | mpbiri | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∩ ∪ 𝐽 ) ∈ 𝒫 ∪ 𝐽 ) |
| 13 | 12 | adantl | ⊢ ( ( 𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ∩ ∪ 𝐽 ) ∈ 𝒫 ∪ 𝐽 ) |
| 14 | 4 7 13 | rspcdva | ⊢ ( ( 𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉 ) → ( 𝐽 ↾t ( 𝐴 ∩ ∪ 𝐽 ) ) ∈ Nrm ) |
| 15 | 2 14 | eqeltrd | ⊢ ( ( 𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉 ) → ( 𝐽 ↾t 𝐴 ) ∈ Nrm ) |