This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain and codomain of the outer volume function. (Contributed by Mario Carneiro, 16-Mar-2014) (Proof shortened by AV, 17-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ovolf | ⊢ vol* : 𝒫 ℝ ⟶ ( 0 [,] +∞ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrltso | ⊢ < Or ℝ* | |
| 2 | 1 | infex | ⊢ inf ( { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑥 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } , ℝ* , < ) ∈ V |
| 3 | df-ovol | ⊢ vol* = ( 𝑥 ∈ 𝒫 ℝ ↦ inf ( { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑥 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } , ℝ* , < ) ) | |
| 4 | 2 3 | fnmpti | ⊢ vol* Fn 𝒫 ℝ |
| 5 | elpwi | ⊢ ( 𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ ) | |
| 6 | ovolcl | ⊢ ( 𝑥 ⊆ ℝ → ( vol* ‘ 𝑥 ) ∈ ℝ* ) | |
| 7 | ovolge0 | ⊢ ( 𝑥 ⊆ ℝ → 0 ≤ ( vol* ‘ 𝑥 ) ) | |
| 8 | pnfge | ⊢ ( ( vol* ‘ 𝑥 ) ∈ ℝ* → ( vol* ‘ 𝑥 ) ≤ +∞ ) | |
| 9 | 6 8 | syl | ⊢ ( 𝑥 ⊆ ℝ → ( vol* ‘ 𝑥 ) ≤ +∞ ) |
| 10 | 0xr | ⊢ 0 ∈ ℝ* | |
| 11 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 12 | elicc1 | ⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( vol* ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ↔ ( ( vol* ‘ 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( vol* ‘ 𝑥 ) ∧ ( vol* ‘ 𝑥 ) ≤ +∞ ) ) ) | |
| 13 | 10 11 12 | mp2an | ⊢ ( ( vol* ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ↔ ( ( vol* ‘ 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( vol* ‘ 𝑥 ) ∧ ( vol* ‘ 𝑥 ) ≤ +∞ ) ) |
| 14 | 6 7 9 13 | syl3anbrc | ⊢ ( 𝑥 ⊆ ℝ → ( vol* ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ) |
| 15 | 5 14 | syl | ⊢ ( 𝑥 ∈ 𝒫 ℝ → ( vol* ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ) |
| 16 | 15 | rgen | ⊢ ∀ 𝑥 ∈ 𝒫 ℝ ( vol* ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) |
| 17 | ffnfv | ⊢ ( vol* : 𝒫 ℝ ⟶ ( 0 [,] +∞ ) ↔ ( vol* Fn 𝒫 ℝ ∧ ∀ 𝑥 ∈ 𝒫 ℝ ( vol* ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ) ) | |
| 18 | 4 16 17 | mpbir2an | ⊢ vol* : 𝒫 ℝ ⟶ ( 0 [,] +∞ ) |