This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A homomorphism of left modules is a group homomorphism which additionally preserves the scalar product. This requires both structures to be left modules over the same ring. (Contributed by Stefan O'Rear, 31-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-lmhm | ⊢ LMHom = ( 𝑠 ∈ LMod , 𝑡 ∈ LMod ↦ { 𝑓 ∈ ( 𝑠 GrpHom 𝑡 ) ∣ [ ( Scalar ‘ 𝑠 ) / 𝑤 ] ( ( Scalar ‘ 𝑡 ) = 𝑤 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑠 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | clmhm | ⊢ LMHom | |
| 1 | vs | ⊢ 𝑠 | |
| 2 | clmod | ⊢ LMod | |
| 3 | vt | ⊢ 𝑡 | |
| 4 | vf | ⊢ 𝑓 | |
| 5 | 1 | cv | ⊢ 𝑠 |
| 6 | cghm | ⊢ GrpHom | |
| 7 | 3 | cv | ⊢ 𝑡 |
| 8 | 5 7 6 | co | ⊢ ( 𝑠 GrpHom 𝑡 ) |
| 9 | csca | ⊢ Scalar | |
| 10 | 5 9 | cfv | ⊢ ( Scalar ‘ 𝑠 ) |
| 11 | vw | ⊢ 𝑤 | |
| 12 | 7 9 | cfv | ⊢ ( Scalar ‘ 𝑡 ) |
| 13 | 11 | cv | ⊢ 𝑤 |
| 14 | 12 13 | wceq | ⊢ ( Scalar ‘ 𝑡 ) = 𝑤 |
| 15 | vx | ⊢ 𝑥 | |
| 16 | cbs | ⊢ Base | |
| 17 | 13 16 | cfv | ⊢ ( Base ‘ 𝑤 ) |
| 18 | vy | ⊢ 𝑦 | |
| 19 | 5 16 | cfv | ⊢ ( Base ‘ 𝑠 ) |
| 20 | 4 | cv | ⊢ 𝑓 |
| 21 | 15 | cv | ⊢ 𝑥 |
| 22 | cvsca | ⊢ ·𝑠 | |
| 23 | 5 22 | cfv | ⊢ ( ·𝑠 ‘ 𝑠 ) |
| 24 | 18 | cv | ⊢ 𝑦 |
| 25 | 21 24 23 | co | ⊢ ( 𝑥 ( ·𝑠 ‘ 𝑠 ) 𝑦 ) |
| 26 | 25 20 | cfv | ⊢ ( 𝑓 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑠 ) 𝑦 ) ) |
| 27 | 7 22 | cfv | ⊢ ( ·𝑠 ‘ 𝑡 ) |
| 28 | 24 20 | cfv | ⊢ ( 𝑓 ‘ 𝑦 ) |
| 29 | 21 28 27 | co | ⊢ ( 𝑥 ( ·𝑠 ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) |
| 30 | 26 29 | wceq | ⊢ ( 𝑓 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑠 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) |
| 31 | 30 18 19 | wral | ⊢ ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑠 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) |
| 32 | 31 15 17 | wral | ⊢ ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑠 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) |
| 33 | 14 32 | wa | ⊢ ( ( Scalar ‘ 𝑡 ) = 𝑤 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑠 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ) |
| 34 | 33 11 10 | wsbc | ⊢ [ ( Scalar ‘ 𝑠 ) / 𝑤 ] ( ( Scalar ‘ 𝑡 ) = 𝑤 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑠 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ) |
| 35 | 34 4 8 | crab | ⊢ { 𝑓 ∈ ( 𝑠 GrpHom 𝑡 ) ∣ [ ( Scalar ‘ 𝑠 ) / 𝑤 ] ( ( Scalar ‘ 𝑡 ) = 𝑤 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑠 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ) } |
| 36 | 1 3 2 2 35 | cmpo | ⊢ ( 𝑠 ∈ LMod , 𝑡 ∈ LMod ↦ { 𝑓 ∈ ( 𝑠 GrpHom 𝑡 ) ∣ [ ( Scalar ‘ 𝑠 ) / 𝑤 ] ( ( Scalar ‘ 𝑡 ) = 𝑤 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑠 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ) } ) |
| 37 | 0 36 | wceq | ⊢ LMHom = ( 𝑠 ∈ LMod , 𝑡 ∈ LMod ↦ { 𝑓 ∈ ( 𝑠 GrpHom 𝑡 ) ∣ [ ( Scalar ‘ 𝑠 ) / 𝑤 ] ( ( Scalar ‘ 𝑡 ) = 𝑤 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑠 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ) } ) |