This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of irreducible elements in a ring. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-irred | ⊢ Irred = ( 𝑤 ∈ V ↦ ⦋ ( ( Base ‘ 𝑤 ) ∖ ( Unit ‘ 𝑤 ) ) / 𝑏 ⦌ { 𝑧 ∈ 𝑏 ∣ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( .r ‘ 𝑤 ) 𝑦 ) ≠ 𝑧 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cir | ⊢ Irred | |
| 1 | vw | ⊢ 𝑤 | |
| 2 | cvv | ⊢ V | |
| 3 | cbs | ⊢ Base | |
| 4 | 1 | cv | ⊢ 𝑤 |
| 5 | 4 3 | cfv | ⊢ ( Base ‘ 𝑤 ) |
| 6 | cui | ⊢ Unit | |
| 7 | 4 6 | cfv | ⊢ ( Unit ‘ 𝑤 ) |
| 8 | 5 7 | cdif | ⊢ ( ( Base ‘ 𝑤 ) ∖ ( Unit ‘ 𝑤 ) ) |
| 9 | vb | ⊢ 𝑏 | |
| 10 | vz | ⊢ 𝑧 | |
| 11 | 9 | cv | ⊢ 𝑏 |
| 12 | vx | ⊢ 𝑥 | |
| 13 | vy | ⊢ 𝑦 | |
| 14 | 12 | cv | ⊢ 𝑥 |
| 15 | cmulr | ⊢ .r | |
| 16 | 4 15 | cfv | ⊢ ( .r ‘ 𝑤 ) |
| 17 | 13 | cv | ⊢ 𝑦 |
| 18 | 14 17 16 | co | ⊢ ( 𝑥 ( .r ‘ 𝑤 ) 𝑦 ) |
| 19 | 10 | cv | ⊢ 𝑧 |
| 20 | 18 19 | wne | ⊢ ( 𝑥 ( .r ‘ 𝑤 ) 𝑦 ) ≠ 𝑧 |
| 21 | 20 13 11 | wral | ⊢ ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( .r ‘ 𝑤 ) 𝑦 ) ≠ 𝑧 |
| 22 | 21 12 11 | wral | ⊢ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( .r ‘ 𝑤 ) 𝑦 ) ≠ 𝑧 |
| 23 | 22 10 11 | crab | ⊢ { 𝑧 ∈ 𝑏 ∣ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( .r ‘ 𝑤 ) 𝑦 ) ≠ 𝑧 } |
| 24 | 9 8 23 | csb | ⊢ ⦋ ( ( Base ‘ 𝑤 ) ∖ ( Unit ‘ 𝑤 ) ) / 𝑏 ⦌ { 𝑧 ∈ 𝑏 ∣ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( .r ‘ 𝑤 ) 𝑦 ) ≠ 𝑧 } |
| 25 | 1 2 24 | cmpt | ⊢ ( 𝑤 ∈ V ↦ ⦋ ( ( Base ‘ 𝑤 ) ∖ ( Unit ‘ 𝑤 ) ) / 𝑏 ⦌ { 𝑧 ∈ 𝑏 ∣ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( .r ‘ 𝑤 ) 𝑦 ) ≠ 𝑧 } ) |
| 26 | 0 25 | wceq | ⊢ Irred = ( 𝑤 ∈ V ↦ ⦋ ( ( Base ‘ 𝑤 ) ∖ ( Unit ‘ 𝑤 ) ) / 𝑏 ⦌ { 𝑧 ∈ 𝑏 ∣ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( .r ‘ 𝑤 ) 𝑦 ) ≠ 𝑧 } ) |