This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An irreducible element of a ring is a non-unit that is not the product of two non-units. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | irred.1 | |- B = ( Base ` R ) |
|
| irred.2 | |- U = ( Unit ` R ) |
||
| irred.3 | |- I = ( Irred ` R ) |
||
| irred.4 | |- N = ( B \ U ) |
||
| irred.5 | |- .x. = ( .r ` R ) |
||
| Assertion | isirred | |- ( X e. I <-> ( X e. N /\ A. x e. N A. y e. N ( x .x. y ) =/= X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | irred.1 | |- B = ( Base ` R ) |
|
| 2 | irred.2 | |- U = ( Unit ` R ) |
|
| 3 | irred.3 | |- I = ( Irred ` R ) |
|
| 4 | irred.4 | |- N = ( B \ U ) |
|
| 5 | irred.5 | |- .x. = ( .r ` R ) |
|
| 6 | elfvdm | |- ( X e. ( Irred ` R ) -> R e. dom Irred ) |
|
| 7 | 6 3 | eleq2s | |- ( X e. I -> R e. dom Irred ) |
| 8 | 7 | elexd | |- ( X e. I -> R e. _V ) |
| 9 | eldifi | |- ( X e. ( B \ U ) -> X e. B ) |
|
| 10 | 9 4 | eleq2s | |- ( X e. N -> X e. B ) |
| 11 | 10 1 | eleqtrdi | |- ( X e. N -> X e. ( Base ` R ) ) |
| 12 | 11 | elfvexd | |- ( X e. N -> R e. _V ) |
| 13 | 12 | adantr | |- ( ( X e. N /\ A. x e. N A. y e. N ( x .x. y ) =/= X ) -> R e. _V ) |
| 14 | fvex | |- ( Base ` r ) e. _V |
|
| 15 | difexg | |- ( ( Base ` r ) e. _V -> ( ( Base ` r ) \ ( Unit ` r ) ) e. _V ) |
|
| 16 | 14 15 | mp1i | |- ( r = R -> ( ( Base ` r ) \ ( Unit ` r ) ) e. _V ) |
| 17 | simpr | |- ( ( r = R /\ b = ( ( Base ` r ) \ ( Unit ` r ) ) ) -> b = ( ( Base ` r ) \ ( Unit ` r ) ) ) |
|
| 18 | simpl | |- ( ( r = R /\ b = ( ( Base ` r ) \ ( Unit ` r ) ) ) -> r = R ) |
|
| 19 | 18 | fveq2d | |- ( ( r = R /\ b = ( ( Base ` r ) \ ( Unit ` r ) ) ) -> ( Base ` r ) = ( Base ` R ) ) |
| 20 | 19 1 | eqtr4di | |- ( ( r = R /\ b = ( ( Base ` r ) \ ( Unit ` r ) ) ) -> ( Base ` r ) = B ) |
| 21 | 18 | fveq2d | |- ( ( r = R /\ b = ( ( Base ` r ) \ ( Unit ` r ) ) ) -> ( Unit ` r ) = ( Unit ` R ) ) |
| 22 | 21 2 | eqtr4di | |- ( ( r = R /\ b = ( ( Base ` r ) \ ( Unit ` r ) ) ) -> ( Unit ` r ) = U ) |
| 23 | 20 22 | difeq12d | |- ( ( r = R /\ b = ( ( Base ` r ) \ ( Unit ` r ) ) ) -> ( ( Base ` r ) \ ( Unit ` r ) ) = ( B \ U ) ) |
| 24 | 23 4 | eqtr4di | |- ( ( r = R /\ b = ( ( Base ` r ) \ ( Unit ` r ) ) ) -> ( ( Base ` r ) \ ( Unit ` r ) ) = N ) |
| 25 | 17 24 | eqtrd | |- ( ( r = R /\ b = ( ( Base ` r ) \ ( Unit ` r ) ) ) -> b = N ) |
| 26 | 18 | fveq2d | |- ( ( r = R /\ b = ( ( Base ` r ) \ ( Unit ` r ) ) ) -> ( .r ` r ) = ( .r ` R ) ) |
| 27 | 26 5 | eqtr4di | |- ( ( r = R /\ b = ( ( Base ` r ) \ ( Unit ` r ) ) ) -> ( .r ` r ) = .x. ) |
| 28 | 27 | oveqd | |- ( ( r = R /\ b = ( ( Base ` r ) \ ( Unit ` r ) ) ) -> ( x ( .r ` r ) y ) = ( x .x. y ) ) |
| 29 | 28 | neeq1d | |- ( ( r = R /\ b = ( ( Base ` r ) \ ( Unit ` r ) ) ) -> ( ( x ( .r ` r ) y ) =/= z <-> ( x .x. y ) =/= z ) ) |
| 30 | 25 29 | raleqbidv | |- ( ( r = R /\ b = ( ( Base ` r ) \ ( Unit ` r ) ) ) -> ( A. y e. b ( x ( .r ` r ) y ) =/= z <-> A. y e. N ( x .x. y ) =/= z ) ) |
| 31 | 25 30 | raleqbidv | |- ( ( r = R /\ b = ( ( Base ` r ) \ ( Unit ` r ) ) ) -> ( A. x e. b A. y e. b ( x ( .r ` r ) y ) =/= z <-> A. x e. N A. y e. N ( x .x. y ) =/= z ) ) |
| 32 | 25 31 | rabeqbidv | |- ( ( r = R /\ b = ( ( Base ` r ) \ ( Unit ` r ) ) ) -> { z e. b | A. x e. b A. y e. b ( x ( .r ` r ) y ) =/= z } = { z e. N | A. x e. N A. y e. N ( x .x. y ) =/= z } ) |
| 33 | 16 32 | csbied | |- ( r = R -> [_ ( ( Base ` r ) \ ( Unit ` r ) ) / b ]_ { z e. b | A. x e. b A. y e. b ( x ( .r ` r ) y ) =/= z } = { z e. N | A. x e. N A. y e. N ( x .x. y ) =/= z } ) |
| 34 | df-irred | |- Irred = ( r e. _V |-> [_ ( ( Base ` r ) \ ( Unit ` r ) ) / b ]_ { z e. b | A. x e. b A. y e. b ( x ( .r ` r ) y ) =/= z } ) |
|
| 35 | fvex | |- ( Base ` R ) e. _V |
|
| 36 | 1 35 | eqeltri | |- B e. _V |
| 37 | 36 | difexi | |- ( B \ U ) e. _V |
| 38 | 4 37 | eqeltri | |- N e. _V |
| 39 | 38 | rabex | |- { z e. N | A. x e. N A. y e. N ( x .x. y ) =/= z } e. _V |
| 40 | 33 34 39 | fvmpt | |- ( R e. _V -> ( Irred ` R ) = { z e. N | A. x e. N A. y e. N ( x .x. y ) =/= z } ) |
| 41 | 3 40 | eqtrid | |- ( R e. _V -> I = { z e. N | A. x e. N A. y e. N ( x .x. y ) =/= z } ) |
| 42 | 41 | eleq2d | |- ( R e. _V -> ( X e. I <-> X e. { z e. N | A. x e. N A. y e. N ( x .x. y ) =/= z } ) ) |
| 43 | neeq2 | |- ( z = X -> ( ( x .x. y ) =/= z <-> ( x .x. y ) =/= X ) ) |
|
| 44 | 43 | 2ralbidv | |- ( z = X -> ( A. x e. N A. y e. N ( x .x. y ) =/= z <-> A. x e. N A. y e. N ( x .x. y ) =/= X ) ) |
| 45 | 44 | elrab | |- ( X e. { z e. N | A. x e. N A. y e. N ( x .x. y ) =/= z } <-> ( X e. N /\ A. x e. N A. y e. N ( x .x. y ) =/= X ) ) |
| 46 | 42 45 | bitrdi | |- ( R e. _V -> ( X e. I <-> ( X e. N /\ A. x e. N A. y e. N ( x .x. y ) =/= X ) ) ) |
| 47 | 8 13 46 | pm5.21nii | |- ( X e. I <-> ( X e. N /\ A. x e. N A. y e. N ( x .x. y ) =/= X ) ) |