This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The triangles in a graph. (Contributed by AV, 20-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grtri.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| grtri.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | grtri | ⊢ ( 𝐺 ∈ 𝑊 → ( GrTriangles ‘ 𝐺 ) = { 𝑡 ∈ 𝒫 𝑉 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grtri.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | grtri.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | df-grtri | ⊢ GrTriangles = ( 𝑔 ∈ V ↦ ⦋ ( Vtx ‘ 𝑔 ) / 𝑣 ⦌ ⦋ ( Edg ‘ 𝑔 ) / 𝑒 ⦌ { 𝑡 ∈ 𝒫 𝑣 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) } ) | |
| 4 | 3 | a1i | ⊢ ( 𝐺 ∈ 𝑊 → GrTriangles = ( 𝑔 ∈ V ↦ ⦋ ( Vtx ‘ 𝑔 ) / 𝑣 ⦌ ⦋ ( Edg ‘ 𝑔 ) / 𝑒 ⦌ { 𝑡 ∈ 𝒫 𝑣 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) } ) ) |
| 5 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ) | |
| 6 | 5 1 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = 𝑉 ) |
| 7 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( Edg ‘ 𝑔 ) = ( Edg ‘ 𝐺 ) ) | |
| 8 | 7 2 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( Edg ‘ 𝑔 ) = 𝐸 ) |
| 9 | 8 | csbeq1d | ⊢ ( 𝑔 = 𝐺 → ⦋ ( Edg ‘ 𝑔 ) / 𝑒 ⦌ { 𝑡 ∈ 𝒫 𝑣 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) } = ⦋ 𝐸 / 𝑒 ⦌ { 𝑡 ∈ 𝒫 𝑣 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) } ) |
| 10 | 6 9 | csbeq12dv | ⊢ ( 𝑔 = 𝐺 → ⦋ ( Vtx ‘ 𝑔 ) / 𝑣 ⦌ ⦋ ( Edg ‘ 𝑔 ) / 𝑒 ⦌ { 𝑡 ∈ 𝒫 𝑣 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) } = ⦋ 𝑉 / 𝑣 ⦌ ⦋ 𝐸 / 𝑒 ⦌ { 𝑡 ∈ 𝒫 𝑣 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) } ) |
| 11 | 10 | adantl | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑔 = 𝐺 ) → ⦋ ( Vtx ‘ 𝑔 ) / 𝑣 ⦌ ⦋ ( Edg ‘ 𝑔 ) / 𝑒 ⦌ { 𝑡 ∈ 𝒫 𝑣 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) } = ⦋ 𝑉 / 𝑣 ⦌ ⦋ 𝐸 / 𝑒 ⦌ { 𝑡 ∈ 𝒫 𝑣 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) } ) |
| 12 | 1 | fvexi | ⊢ 𝑉 ∈ V |
| 13 | 2 | fvexi | ⊢ 𝐸 ∈ V |
| 14 | pweq | ⊢ ( 𝑣 = 𝑉 → 𝒫 𝑣 = 𝒫 𝑉 ) | |
| 15 | 14 | adantr | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → 𝒫 𝑣 = 𝒫 𝑉 ) |
| 16 | eleq2 | ⊢ ( 𝑒 = 𝐸 → ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ↔ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ) ) | |
| 17 | eleq2 | ⊢ ( 𝑒 = 𝐸 → ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ↔ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) | |
| 18 | eleq2 | ⊢ ( 𝑒 = 𝐸 → ( { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ↔ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) | |
| 19 | 16 17 18 | 3anbi123d | ⊢ ( 𝑒 = 𝐸 → ( ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ↔ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) ) |
| 20 | 19 | anbi2d | ⊢ ( 𝑒 = 𝐸 → ( ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) ↔ ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) ) ) |
| 21 | 20 | exbidv | ⊢ ( 𝑒 = 𝐸 → ( ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) ) ) |
| 22 | 21 | adantl | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) ) ) |
| 23 | 15 22 | rabeqbidv | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → { 𝑡 ∈ 𝒫 𝑣 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) } = { 𝑡 ∈ 𝒫 𝑉 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) } ) |
| 24 | 12 13 23 | csbie2 | ⊢ ⦋ 𝑉 / 𝑣 ⦌ ⦋ 𝐸 / 𝑒 ⦌ { 𝑡 ∈ 𝒫 𝑣 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) } = { 𝑡 ∈ 𝒫 𝑉 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) } |
| 25 | 11 24 | eqtrdi | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑔 = 𝐺 ) → ⦋ ( Vtx ‘ 𝑔 ) / 𝑣 ⦌ ⦋ ( Edg ‘ 𝑔 ) / 𝑒 ⦌ { 𝑡 ∈ 𝒫 𝑣 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝑒 ) ) } = { 𝑡 ∈ 𝒫 𝑉 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) } ) |
| 26 | elex | ⊢ ( 𝐺 ∈ 𝑊 → 𝐺 ∈ V ) | |
| 27 | 1 | pweqi | ⊢ 𝒫 𝑉 = 𝒫 ( Vtx ‘ 𝐺 ) |
| 28 | fvex | ⊢ ( Vtx ‘ 𝐺 ) ∈ V | |
| 29 | 28 | pwex | ⊢ 𝒫 ( Vtx ‘ 𝐺 ) ∈ V |
| 30 | 27 29 | eqeltri | ⊢ 𝒫 𝑉 ∈ V |
| 31 | 30 | rabex | ⊢ { 𝑡 ∈ 𝒫 𝑉 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) } ∈ V |
| 32 | 31 | a1i | ⊢ ( 𝐺 ∈ 𝑊 → { 𝑡 ∈ 𝒫 𝑉 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) } ∈ V ) |
| 33 | 4 25 26 32 | fvmptd | ⊢ ( 𝐺 ∈ 𝑊 → ( GrTriangles ‘ 𝐺 ) = { 𝑡 ∈ 𝒫 𝑉 ∣ ∃ 𝑓 ( 𝑓 : ( 0 ..^ 3 ) –1-1-onto→ 𝑡 ∧ ( { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 1 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 0 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ∧ { ( 𝑓 ‘ 1 ) , ( 𝑓 ‘ 2 ) } ∈ 𝐸 ) ) } ) |