This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The left inverse element of a group is unique. Lemma 2.2.1(b) of Herstein p. 55. (Contributed by NM, 24-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinveu.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpinveu.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| grpinveu.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | grpinveu | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ∃! 𝑦 ∈ 𝐵 ( 𝑦 + 𝑋 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinveu.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpinveu.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | grpinveu.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | 1 2 3 | grpinvex | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑋 ) = 0 ) |
| 5 | eqtr3 | ⊢ ( ( ( 𝑦 + 𝑋 ) = 0 ∧ ( 𝑧 + 𝑋 ) = 0 ) → ( 𝑦 + 𝑋 ) = ( 𝑧 + 𝑋 ) ) | |
| 6 | 1 2 | grprcan | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑦 + 𝑋 ) = ( 𝑧 + 𝑋 ) ↔ 𝑦 = 𝑧 ) ) |
| 7 | 5 6 | imbitrid | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( ( 𝑦 + 𝑋 ) = 0 ∧ ( 𝑧 + 𝑋 ) = 0 ) → 𝑦 = 𝑧 ) ) |
| 8 | 7 | 3exp2 | ⊢ ( 𝐺 ∈ Grp → ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ 𝐵 → ( 𝑋 ∈ 𝐵 → ( ( ( 𝑦 + 𝑋 ) = 0 ∧ ( 𝑧 + 𝑋 ) = 0 ) → 𝑦 = 𝑧 ) ) ) ) ) |
| 9 | 8 | com24 | ⊢ ( 𝐺 ∈ Grp → ( 𝑋 ∈ 𝐵 → ( 𝑧 ∈ 𝐵 → ( 𝑦 ∈ 𝐵 → ( ( ( 𝑦 + 𝑋 ) = 0 ∧ ( 𝑧 + 𝑋 ) = 0 ) → 𝑦 = 𝑧 ) ) ) ) ) |
| 10 | 9 | imp41 | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( ( 𝑦 + 𝑋 ) = 0 ∧ ( 𝑧 + 𝑋 ) = 0 ) → 𝑦 = 𝑧 ) ) |
| 11 | 10 | an32s | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( ( 𝑦 + 𝑋 ) = 0 ∧ ( 𝑧 + 𝑋 ) = 0 ) → 𝑦 = 𝑧 ) ) |
| 12 | 11 | expd | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑦 + 𝑋 ) = 0 → ( ( 𝑧 + 𝑋 ) = 0 → 𝑦 = 𝑧 ) ) ) |
| 13 | 12 | ralrimdva | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑦 + 𝑋 ) = 0 → ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 + 𝑋 ) = 0 → 𝑦 = 𝑧 ) ) ) |
| 14 | 13 | ancld | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑦 + 𝑋 ) = 0 → ( ( 𝑦 + 𝑋 ) = 0 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 + 𝑋 ) = 0 → 𝑦 = 𝑧 ) ) ) ) |
| 15 | 14 | reximdva | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑋 ) = 0 → ∃ 𝑦 ∈ 𝐵 ( ( 𝑦 + 𝑋 ) = 0 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 + 𝑋 ) = 0 → 𝑦 = 𝑧 ) ) ) ) |
| 16 | 4 15 | mpd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ( ( 𝑦 + 𝑋 ) = 0 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 + 𝑋 ) = 0 → 𝑦 = 𝑧 ) ) ) |
| 17 | oveq1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 + 𝑋 ) = ( 𝑧 + 𝑋 ) ) | |
| 18 | 17 | eqeq1d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑦 + 𝑋 ) = 0 ↔ ( 𝑧 + 𝑋 ) = 0 ) ) |
| 19 | 18 | reu8 | ⊢ ( ∃! 𝑦 ∈ 𝐵 ( 𝑦 + 𝑋 ) = 0 ↔ ∃ 𝑦 ∈ 𝐵 ( ( 𝑦 + 𝑋 ) = 0 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑧 + 𝑋 ) = 0 → 𝑦 = 𝑧 ) ) ) |
| 20 | 16 19 | sylibr | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ∃! 𝑦 ∈ 𝐵 ( 𝑦 + 𝑋 ) = 0 ) |