This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function returning all the functors from a category t to a category u . Definition 3.17 of Adamek p. 29, and definition in Lang p. 62 ("covariant functor"). Intuitively a functor associates any morphism of t to a morphism of u , any object of t to an object of u , and respects the identity, the composition, the domain and the codomain. Here to capture the idea that a functor associates any object of t to an object of u we write it associates any identity of t to an identity of u which simplifies the definition. According to remark 3.19 in Adamek p. 30, "a functor F : A -> B is technically a family of functions; one from Ob(A) to Ob(B) [here: f, called "the object part" in the following], and for each pair (A,A') of A-objects, one from hom(A,A') to hom(FA, FA') [here: g, called "the morphism part" in the following]". (Contributed by FL, 10-Feb-2008) (Revised by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-func | ⊢ Func = ( 𝑡 ∈ Cat , 𝑢 ∈ Cat ↦ { 〈 𝑓 , 𝑔 〉 ∣ [ ( Base ‘ 𝑡 ) / 𝑏 ] ( 𝑓 : 𝑏 ⟶ ( Base ‘ 𝑢 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝑏 × 𝑏 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝑢 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝑡 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝑏 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝑡 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝑢 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑡 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑡 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cfunc | ⊢ Func | |
| 1 | vt | ⊢ 𝑡 | |
| 2 | ccat | ⊢ Cat | |
| 3 | vu | ⊢ 𝑢 | |
| 4 | vf | ⊢ 𝑓 | |
| 5 | vg | ⊢ 𝑔 | |
| 6 | cbs | ⊢ Base | |
| 7 | 1 | cv | ⊢ 𝑡 |
| 8 | 7 6 | cfv | ⊢ ( Base ‘ 𝑡 ) |
| 9 | vb | ⊢ 𝑏 | |
| 10 | 4 | cv | ⊢ 𝑓 |
| 11 | 9 | cv | ⊢ 𝑏 |
| 12 | 3 | cv | ⊢ 𝑢 |
| 13 | 12 6 | cfv | ⊢ ( Base ‘ 𝑢 ) |
| 14 | 11 13 10 | wf | ⊢ 𝑓 : 𝑏 ⟶ ( Base ‘ 𝑢 ) |
| 15 | 5 | cv | ⊢ 𝑔 |
| 16 | vz | ⊢ 𝑧 | |
| 17 | 11 11 | cxp | ⊢ ( 𝑏 × 𝑏 ) |
| 18 | c1st | ⊢ 1st | |
| 19 | 16 | cv | ⊢ 𝑧 |
| 20 | 19 18 | cfv | ⊢ ( 1st ‘ 𝑧 ) |
| 21 | 20 10 | cfv | ⊢ ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) |
| 22 | chom | ⊢ Hom | |
| 23 | 12 22 | cfv | ⊢ ( Hom ‘ 𝑢 ) |
| 24 | c2nd | ⊢ 2nd | |
| 25 | 19 24 | cfv | ⊢ ( 2nd ‘ 𝑧 ) |
| 26 | 25 10 | cfv | ⊢ ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) |
| 27 | 21 26 23 | co | ⊢ ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝑢 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) |
| 28 | cmap | ⊢ ↑m | |
| 29 | 7 22 | cfv | ⊢ ( Hom ‘ 𝑡 ) |
| 30 | 19 29 | cfv | ⊢ ( ( Hom ‘ 𝑡 ) ‘ 𝑧 ) |
| 31 | 27 30 28 | co | ⊢ ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝑢 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝑡 ) ‘ 𝑧 ) ) |
| 32 | 16 17 31 | cixp | ⊢ X 𝑧 ∈ ( 𝑏 × 𝑏 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝑢 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝑡 ) ‘ 𝑧 ) ) |
| 33 | 15 32 | wcel | ⊢ 𝑔 ∈ X 𝑧 ∈ ( 𝑏 × 𝑏 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝑢 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝑡 ) ‘ 𝑧 ) ) |
| 34 | vx | ⊢ 𝑥 | |
| 35 | 34 | cv | ⊢ 𝑥 |
| 36 | 35 35 15 | co | ⊢ ( 𝑥 𝑔 𝑥 ) |
| 37 | ccid | ⊢ Id | |
| 38 | 7 37 | cfv | ⊢ ( Id ‘ 𝑡 ) |
| 39 | 35 38 | cfv | ⊢ ( ( Id ‘ 𝑡 ) ‘ 𝑥 ) |
| 40 | 39 36 | cfv | ⊢ ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝑡 ) ‘ 𝑥 ) ) |
| 41 | 12 37 | cfv | ⊢ ( Id ‘ 𝑢 ) |
| 42 | 35 10 | cfv | ⊢ ( 𝑓 ‘ 𝑥 ) |
| 43 | 42 41 | cfv | ⊢ ( ( Id ‘ 𝑢 ) ‘ ( 𝑓 ‘ 𝑥 ) ) |
| 44 | 40 43 | wceq | ⊢ ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝑡 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝑢 ) ‘ ( 𝑓 ‘ 𝑥 ) ) |
| 45 | vy | ⊢ 𝑦 | |
| 46 | vm | ⊢ 𝑚 | |
| 47 | 45 | cv | ⊢ 𝑦 |
| 48 | 35 47 29 | co | ⊢ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) |
| 49 | vn | ⊢ 𝑛 | |
| 50 | 47 19 29 | co | ⊢ ( 𝑦 ( Hom ‘ 𝑡 ) 𝑧 ) |
| 51 | 35 19 15 | co | ⊢ ( 𝑥 𝑔 𝑧 ) |
| 52 | 49 | cv | ⊢ 𝑛 |
| 53 | 35 47 | cop | ⊢ 〈 𝑥 , 𝑦 〉 |
| 54 | cco | ⊢ comp | |
| 55 | 7 54 | cfv | ⊢ ( comp ‘ 𝑡 ) |
| 56 | 53 19 55 | co | ⊢ ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑡 ) 𝑧 ) |
| 57 | 46 | cv | ⊢ 𝑚 |
| 58 | 52 57 56 | co | ⊢ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑡 ) 𝑧 ) 𝑚 ) |
| 59 | 58 51 | cfv | ⊢ ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑡 ) 𝑧 ) 𝑚 ) ) |
| 60 | 47 19 15 | co | ⊢ ( 𝑦 𝑔 𝑧 ) |
| 61 | 52 60 | cfv | ⊢ ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) |
| 62 | 47 10 | cfv | ⊢ ( 𝑓 ‘ 𝑦 ) |
| 63 | 42 62 | cop | ⊢ 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 |
| 64 | 12 54 | cfv | ⊢ ( comp ‘ 𝑢 ) |
| 65 | 19 10 | cfv | ⊢ ( 𝑓 ‘ 𝑧 ) |
| 66 | 63 65 64 | co | ⊢ ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑓 ‘ 𝑧 ) ) |
| 67 | 35 47 15 | co | ⊢ ( 𝑥 𝑔 𝑦 ) |
| 68 | 57 67 | cfv | ⊢ ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) |
| 69 | 61 68 66 | co | ⊢ ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) |
| 70 | 59 69 | wceq | ⊢ ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑡 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) |
| 71 | 70 49 50 | wral | ⊢ ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑡 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑡 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) |
| 72 | 71 46 48 | wral | ⊢ ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑡 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑡 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) |
| 73 | 72 16 11 | wral | ⊢ ∀ 𝑧 ∈ 𝑏 ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑡 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑡 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) |
| 74 | 73 45 11 | wral | ⊢ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑡 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑡 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) |
| 75 | 44 74 | wa | ⊢ ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝑡 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝑢 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑡 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑡 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) |
| 76 | 75 34 11 | wral | ⊢ ∀ 𝑥 ∈ 𝑏 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝑡 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝑢 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑡 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑡 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) |
| 77 | 14 33 76 | w3a | ⊢ ( 𝑓 : 𝑏 ⟶ ( Base ‘ 𝑢 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝑏 × 𝑏 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝑢 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝑡 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝑏 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝑡 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝑢 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑡 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑡 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) |
| 78 | 77 9 8 | wsbc | ⊢ [ ( Base ‘ 𝑡 ) / 𝑏 ] ( 𝑓 : 𝑏 ⟶ ( Base ‘ 𝑢 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝑏 × 𝑏 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝑢 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝑡 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝑏 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝑡 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝑢 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑡 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑡 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) |
| 79 | 78 4 5 | copab | ⊢ { 〈 𝑓 , 𝑔 〉 ∣ [ ( Base ‘ 𝑡 ) / 𝑏 ] ( 𝑓 : 𝑏 ⟶ ( Base ‘ 𝑢 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝑏 × 𝑏 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝑢 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝑡 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝑏 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝑡 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝑢 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑡 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑡 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) } |
| 80 | 1 3 2 2 79 | cmpo | ⊢ ( 𝑡 ∈ Cat , 𝑢 ∈ Cat ↦ { 〈 𝑓 , 𝑔 〉 ∣ [ ( Base ‘ 𝑡 ) / 𝑏 ] ( 𝑓 : 𝑏 ⟶ ( Base ‘ 𝑢 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝑏 × 𝑏 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝑢 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝑡 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝑏 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝑡 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝑢 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑡 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑡 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) } ) |
| 81 | 0 80 | wceq | ⊢ Func = ( 𝑡 ∈ Cat , 𝑢 ∈ Cat ↦ { 〈 𝑓 , 𝑔 〉 ∣ [ ( Base ‘ 𝑡 ) / 𝑏 ] ( 𝑓 : 𝑏 ⟶ ( Base ‘ 𝑢 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( 𝑏 × 𝑏 ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝑢 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝑡 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝑏 ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝑡 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝑢 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝑡 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑡 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) } ) |