This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate " B is finer than A ". This property is, in a sense, the opposite of refinement, as refinement requires every element to be a subset of an element of the original and fineness requires that every element of the original have a subset in the finer cover containing every point. I do not know of a literature reference for this. (Contributed by Jeff Hankins, 28-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isfne.1 | ⊢ 𝑋 = ∪ 𝐴 | |
| isfne.2 | ⊢ 𝑌 = ∪ 𝐵 | ||
| Assertion | isfne | ⊢ ( 𝐵 ∈ 𝐶 → ( 𝐴 Fne 𝐵 ↔ ( 𝑋 = 𝑌 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfne.1 | ⊢ 𝑋 = ∪ 𝐴 | |
| 2 | isfne.2 | ⊢ 𝑌 = ∪ 𝐵 | |
| 3 | fnerel | ⊢ Rel Fne | |
| 4 | 3 | brrelex1i | ⊢ ( 𝐴 Fne 𝐵 → 𝐴 ∈ V ) |
| 5 | 4 | anim1i | ⊢ ( ( 𝐴 Fne 𝐵 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝐶 ) ) |
| 6 | 5 | ancoms | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ 𝐴 Fne 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝐶 ) ) |
| 7 | simpr | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ 𝑋 = 𝑌 ) → 𝑋 = 𝑌 ) | |
| 8 | 7 1 2 | 3eqtr3g | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ 𝑋 = 𝑌 ) → ∪ 𝐴 = ∪ 𝐵 ) |
| 9 | simpr | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ ∪ 𝐴 = ∪ 𝐵 ) → ∪ 𝐴 = ∪ 𝐵 ) | |
| 10 | uniexg | ⊢ ( 𝐵 ∈ 𝐶 → ∪ 𝐵 ∈ V ) | |
| 11 | 10 | adantr | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ ∪ 𝐴 = ∪ 𝐵 ) → ∪ 𝐵 ∈ V ) |
| 12 | 9 11 | eqeltrd | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ ∪ 𝐴 = ∪ 𝐵 ) → ∪ 𝐴 ∈ V ) |
| 13 | uniexb | ⊢ ( 𝐴 ∈ V ↔ ∪ 𝐴 ∈ V ) | |
| 14 | 12 13 | sylibr | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ ∪ 𝐴 = ∪ 𝐵 ) → 𝐴 ∈ V ) |
| 15 | simpl | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ ∪ 𝐴 = ∪ 𝐵 ) → 𝐵 ∈ 𝐶 ) | |
| 16 | 14 15 | jca | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ ∪ 𝐴 = ∪ 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝐶 ) ) |
| 17 | 8 16 | syldan | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ 𝑋 = 𝑌 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝐶 ) ) |
| 18 | 17 | adantrr | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ ( 𝑋 = 𝑌 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝐶 ) ) |
| 19 | unieq | ⊢ ( 𝑟 = 𝐴 → ∪ 𝑟 = ∪ 𝐴 ) | |
| 20 | 19 1 | eqtr4di | ⊢ ( 𝑟 = 𝐴 → ∪ 𝑟 = 𝑋 ) |
| 21 | 20 | eqeq1d | ⊢ ( 𝑟 = 𝐴 → ( ∪ 𝑟 = ∪ 𝑠 ↔ 𝑋 = ∪ 𝑠 ) ) |
| 22 | raleq | ⊢ ( 𝑟 = 𝐴 → ( ∀ 𝑥 ∈ 𝑟 𝑥 ⊆ ∪ ( 𝑠 ∩ 𝒫 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ ∪ ( 𝑠 ∩ 𝒫 𝑥 ) ) ) | |
| 23 | 21 22 | anbi12d | ⊢ ( 𝑟 = 𝐴 → ( ( ∪ 𝑟 = ∪ 𝑠 ∧ ∀ 𝑥 ∈ 𝑟 𝑥 ⊆ ∪ ( 𝑠 ∩ 𝒫 𝑥 ) ) ↔ ( 𝑋 = ∪ 𝑠 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ ∪ ( 𝑠 ∩ 𝒫 𝑥 ) ) ) ) |
| 24 | unieq | ⊢ ( 𝑠 = 𝐵 → ∪ 𝑠 = ∪ 𝐵 ) | |
| 25 | 24 2 | eqtr4di | ⊢ ( 𝑠 = 𝐵 → ∪ 𝑠 = 𝑌 ) |
| 26 | 25 | eqeq2d | ⊢ ( 𝑠 = 𝐵 → ( 𝑋 = ∪ 𝑠 ↔ 𝑋 = 𝑌 ) ) |
| 27 | ineq1 | ⊢ ( 𝑠 = 𝐵 → ( 𝑠 ∩ 𝒫 𝑥 ) = ( 𝐵 ∩ 𝒫 𝑥 ) ) | |
| 28 | 27 | unieqd | ⊢ ( 𝑠 = 𝐵 → ∪ ( 𝑠 ∩ 𝒫 𝑥 ) = ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) |
| 29 | 28 | sseq2d | ⊢ ( 𝑠 = 𝐵 → ( 𝑥 ⊆ ∪ ( 𝑠 ∩ 𝒫 𝑥 ) ↔ 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) ) |
| 30 | 29 | ralbidv | ⊢ ( 𝑠 = 𝐵 → ( ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ ∪ ( 𝑠 ∩ 𝒫 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) ) |
| 31 | 26 30 | anbi12d | ⊢ ( 𝑠 = 𝐵 → ( ( 𝑋 = ∪ 𝑠 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ ∪ ( 𝑠 ∩ 𝒫 𝑥 ) ) ↔ ( 𝑋 = 𝑌 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) ) ) |
| 32 | df-fne | ⊢ Fne = { 〈 𝑟 , 𝑠 〉 ∣ ( ∪ 𝑟 = ∪ 𝑠 ∧ ∀ 𝑥 ∈ 𝑟 𝑥 ⊆ ∪ ( 𝑠 ∩ 𝒫 𝑥 ) ) } | |
| 33 | 23 31 32 | brabg | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 Fne 𝐵 ↔ ( 𝑋 = 𝑌 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) ) ) |
| 34 | 6 18 33 | pm5.21nd | ⊢ ( 𝐵 ∈ 𝐶 → ( 𝐴 Fne 𝐵 ↔ ( 𝑋 = 𝑌 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) ) ) |