This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate " B is finer than A " in terms of the topology generation function. (Contributed by Mario Carneiro, 11-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isfne.1 | ⊢ 𝑋 = ∪ 𝐴 | |
| isfne.2 | ⊢ 𝑌 = ∪ 𝐵 | ||
| Assertion | isfne4 | ⊢ ( 𝐴 Fne 𝐵 ↔ ( 𝑋 = 𝑌 ∧ 𝐴 ⊆ ( topGen ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfne.1 | ⊢ 𝑋 = ∪ 𝐴 | |
| 2 | isfne.2 | ⊢ 𝑌 = ∪ 𝐵 | |
| 3 | fnerel | ⊢ Rel Fne | |
| 4 | 3 | brrelex2i | ⊢ ( 𝐴 Fne 𝐵 → 𝐵 ∈ V ) |
| 5 | simpl | ⊢ ( ( 𝑋 = 𝑌 ∧ 𝐴 ⊆ ( topGen ‘ 𝐵 ) ) → 𝑋 = 𝑌 ) | |
| 6 | 5 1 2 | 3eqtr3g | ⊢ ( ( 𝑋 = 𝑌 ∧ 𝐴 ⊆ ( topGen ‘ 𝐵 ) ) → ∪ 𝐴 = ∪ 𝐵 ) |
| 7 | fvex | ⊢ ( topGen ‘ 𝐵 ) ∈ V | |
| 8 | 7 | ssex | ⊢ ( 𝐴 ⊆ ( topGen ‘ 𝐵 ) → 𝐴 ∈ V ) |
| 9 | 8 | adantl | ⊢ ( ( 𝑋 = 𝑌 ∧ 𝐴 ⊆ ( topGen ‘ 𝐵 ) ) → 𝐴 ∈ V ) |
| 10 | 9 | uniexd | ⊢ ( ( 𝑋 = 𝑌 ∧ 𝐴 ⊆ ( topGen ‘ 𝐵 ) ) → ∪ 𝐴 ∈ V ) |
| 11 | 6 10 | eqeltrrd | ⊢ ( ( 𝑋 = 𝑌 ∧ 𝐴 ⊆ ( topGen ‘ 𝐵 ) ) → ∪ 𝐵 ∈ V ) |
| 12 | uniexb | ⊢ ( 𝐵 ∈ V ↔ ∪ 𝐵 ∈ V ) | |
| 13 | 11 12 | sylibr | ⊢ ( ( 𝑋 = 𝑌 ∧ 𝐴 ⊆ ( topGen ‘ 𝐵 ) ) → 𝐵 ∈ V ) |
| 14 | 1 2 | isfne | ⊢ ( 𝐵 ∈ V → ( 𝐴 Fne 𝐵 ↔ ( 𝑋 = 𝑌 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) ) ) |
| 15 | dfss3 | ⊢ ( 𝐴 ⊆ ( topGen ‘ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ( topGen ‘ 𝐵 ) ) | |
| 16 | eltg | ⊢ ( 𝐵 ∈ V → ( 𝑥 ∈ ( topGen ‘ 𝐵 ) ↔ 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) ) | |
| 17 | 16 | ralbidv | ⊢ ( 𝐵 ∈ V → ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ( topGen ‘ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) ) |
| 18 | 15 17 | bitrid | ⊢ ( 𝐵 ∈ V → ( 𝐴 ⊆ ( topGen ‘ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) ) |
| 19 | 18 | anbi2d | ⊢ ( 𝐵 ∈ V → ( ( 𝑋 = 𝑌 ∧ 𝐴 ⊆ ( topGen ‘ 𝐵 ) ) ↔ ( 𝑋 = 𝑌 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ) ) ) |
| 20 | 14 19 | bitr4d | ⊢ ( 𝐵 ∈ V → ( 𝐴 Fne 𝐵 ↔ ( 𝑋 = 𝑌 ∧ 𝐴 ⊆ ( topGen ‘ 𝐵 ) ) ) ) |
| 21 | 4 13 20 | pm5.21nii | ⊢ ( 𝐴 Fne 𝐵 ↔ ( 𝑋 = 𝑌 ∧ 𝐴 ⊆ ( topGen ‘ 𝐵 ) ) ) |