This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the fineness relation for covers. (Contributed by Jeff Hankins, 28-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-fne | ⊢ Fne = { 〈 𝑥 , 𝑦 〉 ∣ ( ∪ 𝑥 = ∪ 𝑦 ∧ ∀ 𝑧 ∈ 𝑥 𝑧 ⊆ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cfne | ⊢ Fne | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | vy | ⊢ 𝑦 | |
| 3 | 1 | cv | ⊢ 𝑥 |
| 4 | 3 | cuni | ⊢ ∪ 𝑥 |
| 5 | 2 | cv | ⊢ 𝑦 |
| 6 | 5 | cuni | ⊢ ∪ 𝑦 |
| 7 | 4 6 | wceq | ⊢ ∪ 𝑥 = ∪ 𝑦 |
| 8 | vz | ⊢ 𝑧 | |
| 9 | 8 | cv | ⊢ 𝑧 |
| 10 | 9 | cpw | ⊢ 𝒫 𝑧 |
| 11 | 5 10 | cin | ⊢ ( 𝑦 ∩ 𝒫 𝑧 ) |
| 12 | 11 | cuni | ⊢ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) |
| 13 | 9 12 | wss | ⊢ 𝑧 ⊆ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) |
| 14 | 13 8 3 | wral | ⊢ ∀ 𝑧 ∈ 𝑥 𝑧 ⊆ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) |
| 15 | 7 14 | wa | ⊢ ( ∪ 𝑥 = ∪ 𝑦 ∧ ∀ 𝑧 ∈ 𝑥 𝑧 ⊆ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) ) |
| 16 | 15 1 2 | copab | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ∪ 𝑥 = ∪ 𝑦 ∧ ∀ 𝑧 ∈ 𝑥 𝑧 ⊆ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) ) } |
| 17 | 0 16 | wceq | ⊢ Fne = { 〈 𝑥 , 𝑦 〉 ∣ ( ∪ 𝑥 = ∪ 𝑦 ∧ ∀ 𝑧 ∈ 𝑥 𝑧 ⊆ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) ) } |