This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate " B is finer than A ". This property is, in a sense, the opposite of refinement, as refinement requires every element to be a subset of an element of the original and fineness requires that every element of the original have a subset in the finer cover containing every point. I do not know of a literature reference for this. (Contributed by Jeff Hankins, 28-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isfne.1 | |- X = U. A |
|
| isfne.2 | |- Y = U. B |
||
| Assertion | isfne | |- ( B e. C -> ( A Fne B <-> ( X = Y /\ A. x e. A x C_ U. ( B i^i ~P x ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfne.1 | |- X = U. A |
|
| 2 | isfne.2 | |- Y = U. B |
|
| 3 | fnerel | |- Rel Fne |
|
| 4 | 3 | brrelex1i | |- ( A Fne B -> A e. _V ) |
| 5 | 4 | anim1i | |- ( ( A Fne B /\ B e. C ) -> ( A e. _V /\ B e. C ) ) |
| 6 | 5 | ancoms | |- ( ( B e. C /\ A Fne B ) -> ( A e. _V /\ B e. C ) ) |
| 7 | simpr | |- ( ( B e. C /\ X = Y ) -> X = Y ) |
|
| 8 | 7 1 2 | 3eqtr3g | |- ( ( B e. C /\ X = Y ) -> U. A = U. B ) |
| 9 | simpr | |- ( ( B e. C /\ U. A = U. B ) -> U. A = U. B ) |
|
| 10 | uniexg | |- ( B e. C -> U. B e. _V ) |
|
| 11 | 10 | adantr | |- ( ( B e. C /\ U. A = U. B ) -> U. B e. _V ) |
| 12 | 9 11 | eqeltrd | |- ( ( B e. C /\ U. A = U. B ) -> U. A e. _V ) |
| 13 | uniexb | |- ( A e. _V <-> U. A e. _V ) |
|
| 14 | 12 13 | sylibr | |- ( ( B e. C /\ U. A = U. B ) -> A e. _V ) |
| 15 | simpl | |- ( ( B e. C /\ U. A = U. B ) -> B e. C ) |
|
| 16 | 14 15 | jca | |- ( ( B e. C /\ U. A = U. B ) -> ( A e. _V /\ B e. C ) ) |
| 17 | 8 16 | syldan | |- ( ( B e. C /\ X = Y ) -> ( A e. _V /\ B e. C ) ) |
| 18 | 17 | adantrr | |- ( ( B e. C /\ ( X = Y /\ A. x e. A x C_ U. ( B i^i ~P x ) ) ) -> ( A e. _V /\ B e. C ) ) |
| 19 | unieq | |- ( r = A -> U. r = U. A ) |
|
| 20 | 19 1 | eqtr4di | |- ( r = A -> U. r = X ) |
| 21 | 20 | eqeq1d | |- ( r = A -> ( U. r = U. s <-> X = U. s ) ) |
| 22 | raleq | |- ( r = A -> ( A. x e. r x C_ U. ( s i^i ~P x ) <-> A. x e. A x C_ U. ( s i^i ~P x ) ) ) |
|
| 23 | 21 22 | anbi12d | |- ( r = A -> ( ( U. r = U. s /\ A. x e. r x C_ U. ( s i^i ~P x ) ) <-> ( X = U. s /\ A. x e. A x C_ U. ( s i^i ~P x ) ) ) ) |
| 24 | unieq | |- ( s = B -> U. s = U. B ) |
|
| 25 | 24 2 | eqtr4di | |- ( s = B -> U. s = Y ) |
| 26 | 25 | eqeq2d | |- ( s = B -> ( X = U. s <-> X = Y ) ) |
| 27 | ineq1 | |- ( s = B -> ( s i^i ~P x ) = ( B i^i ~P x ) ) |
|
| 28 | 27 | unieqd | |- ( s = B -> U. ( s i^i ~P x ) = U. ( B i^i ~P x ) ) |
| 29 | 28 | sseq2d | |- ( s = B -> ( x C_ U. ( s i^i ~P x ) <-> x C_ U. ( B i^i ~P x ) ) ) |
| 30 | 29 | ralbidv | |- ( s = B -> ( A. x e. A x C_ U. ( s i^i ~P x ) <-> A. x e. A x C_ U. ( B i^i ~P x ) ) ) |
| 31 | 26 30 | anbi12d | |- ( s = B -> ( ( X = U. s /\ A. x e. A x C_ U. ( s i^i ~P x ) ) <-> ( X = Y /\ A. x e. A x C_ U. ( B i^i ~P x ) ) ) ) |
| 32 | df-fne | |- Fne = { <. r , s >. | ( U. r = U. s /\ A. x e. r x C_ U. ( s i^i ~P x ) ) } |
|
| 33 | 23 31 32 | brabg | |- ( ( A e. _V /\ B e. C ) -> ( A Fne B <-> ( X = Y /\ A. x e. A x C_ U. ( B i^i ~P x ) ) ) ) |
| 34 | 6 18 33 | pm5.21nd | |- ( B e. C -> ( A Fne B <-> ( X = Y /\ A. x e. A x C_ U. ( B i^i ~P x ) ) ) ) |