This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set is V-finite iff it behaves finitely under |_| . Definition V of Levy58 p. 3. (Contributed by Stefan O'Rear, 12-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-fin5 | ⊢ FinV = { 𝑥 ∣ ( 𝑥 = ∅ ∨ 𝑥 ≺ ( 𝑥 ⊔ 𝑥 ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cfin5 | ⊢ FinV | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | 1 | cv | ⊢ 𝑥 |
| 3 | c0 | ⊢ ∅ | |
| 4 | 2 3 | wceq | ⊢ 𝑥 = ∅ |
| 5 | csdm | ⊢ ≺ | |
| 6 | 2 2 | cdju | ⊢ ( 𝑥 ⊔ 𝑥 ) |
| 7 | 2 6 5 | wbr | ⊢ 𝑥 ≺ ( 𝑥 ⊔ 𝑥 ) |
| 8 | 4 7 | wo | ⊢ ( 𝑥 = ∅ ∨ 𝑥 ≺ ( 𝑥 ⊔ 𝑥 ) ) |
| 9 | 8 1 | cab | ⊢ { 𝑥 ∣ ( 𝑥 = ∅ ∨ 𝑥 ≺ ( 𝑥 ⊔ 𝑥 ) ) } |
| 10 | 0 9 | wceq | ⊢ FinV = { 𝑥 ∣ ( 𝑥 = ∅ ∨ 𝑥 ≺ ( 𝑥 ⊔ 𝑥 ) ) } |