This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a class abstraction using implicit substitution. (Contributed by NM, 10-Nov-2000) (Revised by AV, 16-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elab3.1 | ⊢ ( 𝜓 → 𝐴 ∈ 𝑉 ) | |
| elab3.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | elab3 | ⊢ ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab3.1 | ⊢ ( 𝜓 → 𝐴 ∈ 𝑉 ) | |
| 2 | elab3.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | 2 | elab3g | ⊢ ( ( 𝜓 → 𝐴 ∈ 𝑉 ) → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) ) |
| 4 | 1 3 | ax-mp | ⊢ ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) |