This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A cluster point of a filter. (Contributed by Jeff Hankins, 10-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fclsval.x | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | isfcls | ⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ↔ ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fclsval.x | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | anass | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ∧ 𝑋 = ∪ 𝐹 ) ∧ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ∧ ( 𝑋 = ∪ 𝐹 ∧ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) ) | |
| 3 | fvssunirn | ⊢ ( Fil ‘ 𝑋 ) ⊆ ∪ ran Fil | |
| 4 | 3 | sseli | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ∪ ran Fil ) |
| 5 | filunibas | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ∪ 𝐹 = 𝑋 ) | |
| 6 | 5 | eqcomd | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝑋 = ∪ 𝐹 ) |
| 7 | 4 6 | jca | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐹 ∈ ∪ ran Fil ∧ 𝑋 = ∪ 𝐹 ) ) |
| 8 | filunirn | ⊢ ( 𝐹 ∈ ∪ ran Fil ↔ 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ) | |
| 9 | fveq2 | ⊢ ( 𝑋 = ∪ 𝐹 → ( Fil ‘ 𝑋 ) = ( Fil ‘ ∪ 𝐹 ) ) | |
| 10 | 9 | eleq2d | ⊢ ( 𝑋 = ∪ 𝐹 → ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ↔ 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ) ) |
| 11 | 10 | biimparc | ⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑋 = ∪ 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 12 | 8 11 | sylanb | ⊢ ( ( 𝐹 ∈ ∪ ran Fil ∧ 𝑋 = ∪ 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 13 | 7 12 | impbii | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ↔ ( 𝐹 ∈ ∪ ran Fil ∧ 𝑋 = ∪ 𝐹 ) ) |
| 14 | 13 | anbi2i | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ↔ ( 𝐽 ∈ Top ∧ ( 𝐹 ∈ ∪ ran Fil ∧ 𝑋 = ∪ 𝐹 ) ) ) |
| 15 | 14 | anbi1i | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ↔ ( ( 𝐽 ∈ Top ∧ ( 𝐹 ∈ ∪ ran Fil ∧ 𝑋 = ∪ 𝐹 ) ) ∧ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |
| 16 | df-3an | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) | |
| 17 | anass | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ∧ 𝑋 = ∪ 𝐹 ) ↔ ( 𝐽 ∈ Top ∧ ( 𝐹 ∈ ∪ ran Fil ∧ 𝑋 = ∪ 𝐹 ) ) ) | |
| 18 | 17 | anbi1i | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ∧ 𝑋 = ∪ 𝐹 ) ∧ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ↔ ( ( 𝐽 ∈ Top ∧ ( 𝐹 ∈ ∪ ran Fil ∧ 𝑋 = ∪ 𝐹 ) ) ∧ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |
| 19 | 15 16 18 | 3bitr4i | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ↔ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ∧ 𝑋 = ∪ 𝐹 ) ∧ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |
| 20 | df-fcls | ⊢ fClus = ( 𝑗 ∈ Top , 𝑓 ∈ ∪ ran Fil ↦ if ( ∪ 𝑗 = ∪ 𝑓 , ∩ 𝑥 ∈ 𝑓 ( ( cls ‘ 𝑗 ) ‘ 𝑥 ) , ∅ ) ) | |
| 21 | 20 | elmpocl | ⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ) |
| 22 | 1 | fclsval | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ) → ( 𝐽 fClus 𝐹 ) = if ( 𝑋 = ∪ 𝐹 , ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) ) |
| 23 | 8 22 | sylan2b | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) → ( 𝐽 fClus 𝐹 ) = if ( 𝑋 = ∪ 𝐹 , ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) ) |
| 24 | 23 | eleq2d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) → ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ↔ 𝐴 ∈ if ( 𝑋 = ∪ 𝐹 , ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) ) ) |
| 25 | n0i | ⊢ ( 𝐴 ∈ if ( 𝑋 = ∪ 𝐹 , ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) → ¬ if ( 𝑋 = ∪ 𝐹 , ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) = ∅ ) | |
| 26 | iffalse | ⊢ ( ¬ 𝑋 = ∪ 𝐹 → if ( 𝑋 = ∪ 𝐹 , ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) = ∅ ) | |
| 27 | 25 26 | nsyl2 | ⊢ ( 𝐴 ∈ if ( 𝑋 = ∪ 𝐹 , ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) → 𝑋 = ∪ 𝐹 ) |
| 28 | 27 | a1i | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) → ( 𝐴 ∈ if ( 𝑋 = ∪ 𝐹 , ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) → 𝑋 = ∪ 𝐹 ) ) |
| 29 | 28 | pm4.71rd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) → ( 𝐴 ∈ if ( 𝑋 = ∪ 𝐹 , ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) ↔ ( 𝑋 = ∪ 𝐹 ∧ 𝐴 ∈ if ( 𝑋 = ∪ 𝐹 , ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) ) ) ) |
| 30 | iftrue | ⊢ ( 𝑋 = ∪ 𝐹 → if ( 𝑋 = ∪ 𝐹 , ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) = ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) | |
| 31 | 30 | adantl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ∧ 𝑋 = ∪ 𝐹 ) → if ( 𝑋 = ∪ 𝐹 , ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) = ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) |
| 32 | 31 | eleq2d | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ∧ 𝑋 = ∪ 𝐹 ) → ( 𝐴 ∈ if ( 𝑋 = ∪ 𝐹 , ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) ↔ 𝐴 ∈ ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |
| 33 | elex | ⊢ ( 𝐴 ∈ ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) → 𝐴 ∈ V ) | |
| 34 | 33 | a1i | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ∧ 𝑋 = ∪ 𝐹 ) → ( 𝐴 ∈ ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) → 𝐴 ∈ V ) ) |
| 35 | filn0 | ⊢ ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) → 𝐹 ≠ ∅ ) | |
| 36 | 8 35 | sylbi | ⊢ ( 𝐹 ∈ ∪ ran Fil → 𝐹 ≠ ∅ ) |
| 37 | 36 | ad2antlr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ∧ 𝑋 = ∪ 𝐹 ) → 𝐹 ≠ ∅ ) |
| 38 | r19.2z | ⊢ ( ( 𝐹 ≠ ∅ ∧ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) → ∃ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) | |
| 39 | 38 | ex | ⊢ ( 𝐹 ≠ ∅ → ( ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) → ∃ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |
| 40 | 37 39 | syl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ∧ 𝑋 = ∪ 𝐹 ) → ( ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) → ∃ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |
| 41 | elex | ⊢ ( 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) → 𝐴 ∈ V ) | |
| 42 | 41 | rexlimivw | ⊢ ( ∃ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) → 𝐴 ∈ V ) |
| 43 | 40 42 | syl6 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ∧ 𝑋 = ∪ 𝐹 ) → ( ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) → 𝐴 ∈ V ) ) |
| 44 | eliin | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ↔ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) | |
| 45 | 44 | a1i | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ∧ 𝑋 = ∪ 𝐹 ) → ( 𝐴 ∈ V → ( 𝐴 ∈ ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ↔ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) ) |
| 46 | 34 43 45 | pm5.21ndd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ∧ 𝑋 = ∪ 𝐹 ) → ( 𝐴 ∈ ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ↔ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |
| 47 | 32 46 | bitrd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ∧ 𝑋 = ∪ 𝐹 ) → ( 𝐴 ∈ if ( 𝑋 = ∪ 𝐹 , ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) ↔ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |
| 48 | 47 | pm5.32da | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) → ( ( 𝑋 = ∪ 𝐹 ∧ 𝐴 ∈ if ( 𝑋 = ∪ 𝐹 , ∩ 𝑠 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) , ∅ ) ) ↔ ( 𝑋 = ∪ 𝐹 ∧ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) ) |
| 49 | 24 29 48 | 3bitrd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) → ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ↔ ( 𝑋 = ∪ 𝐹 ∧ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) ) |
| 50 | 21 49 | biadanii | ⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ) ∧ ( 𝑋 = ∪ 𝐹 ∧ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) ) |
| 51 | 2 19 50 | 3bitr4ri | ⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ↔ ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |