This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express a filter on an unspecified base. (Contributed by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | filunirn | ⊢ ( 𝐹 ∈ ∪ ran Fil ↔ 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex | ⊢ ( fBas ‘ 𝑦 ) ∈ V | |
| 2 | 1 | rabex | ⊢ { 𝑤 ∈ ( fBas ‘ 𝑦 ) ∣ ∀ 𝑧 ∈ 𝒫 𝑦 ( ( 𝑤 ∩ 𝒫 𝑧 ) ≠ ∅ → 𝑧 ∈ 𝑤 ) } ∈ V |
| 3 | df-fil | ⊢ Fil = ( 𝑦 ∈ V ↦ { 𝑤 ∈ ( fBas ‘ 𝑦 ) ∣ ∀ 𝑧 ∈ 𝒫 𝑦 ( ( 𝑤 ∩ 𝒫 𝑧 ) ≠ ∅ → 𝑧 ∈ 𝑤 ) } ) | |
| 4 | 2 3 | fnmpti | ⊢ Fil Fn V |
| 5 | fnunirn | ⊢ ( Fil Fn V → ( 𝐹 ∈ ∪ ran Fil ↔ ∃ 𝑥 ∈ V 𝐹 ∈ ( Fil ‘ 𝑥 ) ) ) | |
| 6 | 4 5 | ax-mp | ⊢ ( 𝐹 ∈ ∪ ran Fil ↔ ∃ 𝑥 ∈ V 𝐹 ∈ ( Fil ‘ 𝑥 ) ) |
| 7 | filunibas | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑥 ) → ∪ 𝐹 = 𝑥 ) | |
| 8 | 7 | fveq2d | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑥 ) → ( Fil ‘ ∪ 𝐹 ) = ( Fil ‘ 𝑥 ) ) |
| 9 | 8 | eleq2d | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑥 ) → ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ↔ 𝐹 ∈ ( Fil ‘ 𝑥 ) ) ) |
| 10 | 9 | ibir | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑥 ) → 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ) |
| 11 | 10 | rexlimivw | ⊢ ( ∃ 𝑥 ∈ V 𝐹 ∈ ( Fil ‘ 𝑥 ) → 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ) |
| 12 | 6 11 | sylbi | ⊢ ( 𝐹 ∈ ∪ ran Fil → 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ) |
| 13 | fvssunirn | ⊢ ( Fil ‘ ∪ 𝐹 ) ⊆ ∪ ran Fil | |
| 14 | 13 | sseli | ⊢ ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) → 𝐹 ∈ ∪ ran Fil ) |
| 15 | 12 14 | impbii | ⊢ ( 𝐹 ∈ ∪ ran Fil ↔ 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ) |