This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a function that takes a filter in a topology to its set of cluster points. (Contributed by Jeff Hankins, 10-Nov-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-fcls | ⊢ fClus = ( 𝑗 ∈ Top , 𝑓 ∈ ∪ ran Fil ↦ if ( ∪ 𝑗 = ∪ 𝑓 , ∩ 𝑥 ∈ 𝑓 ( ( cls ‘ 𝑗 ) ‘ 𝑥 ) , ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cfcls | ⊢ fClus | |
| 1 | vj | ⊢ 𝑗 | |
| 2 | ctop | ⊢ Top | |
| 3 | vf | ⊢ 𝑓 | |
| 4 | cfil | ⊢ Fil | |
| 5 | 4 | crn | ⊢ ran Fil |
| 6 | 5 | cuni | ⊢ ∪ ran Fil |
| 7 | 1 | cv | ⊢ 𝑗 |
| 8 | 7 | cuni | ⊢ ∪ 𝑗 |
| 9 | 3 | cv | ⊢ 𝑓 |
| 10 | 9 | cuni | ⊢ ∪ 𝑓 |
| 11 | 8 10 | wceq | ⊢ ∪ 𝑗 = ∪ 𝑓 |
| 12 | vx | ⊢ 𝑥 | |
| 13 | ccl | ⊢ cls | |
| 14 | 7 13 | cfv | ⊢ ( cls ‘ 𝑗 ) |
| 15 | 12 | cv | ⊢ 𝑥 |
| 16 | 15 14 | cfv | ⊢ ( ( cls ‘ 𝑗 ) ‘ 𝑥 ) |
| 17 | 12 9 16 | ciin | ⊢ ∩ 𝑥 ∈ 𝑓 ( ( cls ‘ 𝑗 ) ‘ 𝑥 ) |
| 18 | c0 | ⊢ ∅ | |
| 19 | 11 17 18 | cif | ⊢ if ( ∪ 𝑗 = ∪ 𝑓 , ∩ 𝑥 ∈ 𝑓 ( ( cls ‘ 𝑗 ) ‘ 𝑥 ) , ∅ ) |
| 20 | 1 3 2 6 19 | cmpo | ⊢ ( 𝑗 ∈ Top , 𝑓 ∈ ∪ ran Fil ↦ if ( ∪ 𝑗 = ∪ 𝑓 , ∩ 𝑥 ∈ 𝑓 ( ( cls ‘ 𝑗 ) ‘ 𝑥 ) , ∅ ) ) |
| 21 | 0 20 | wceq | ⊢ fClus = ( 𝑗 ∈ Top , 𝑓 ∈ ∪ ran Fil ↦ if ( ∪ 𝑗 = ∪ 𝑓 , ∩ 𝑥 ∈ 𝑓 ( ( cls ‘ 𝑗 ) ‘ 𝑥 ) , ∅ ) ) |