This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of all cluster points of a filter. (Contributed by Jeff Hankins, 10-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fclsval.x | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | fclsval | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑌 ) ) → ( 𝐽 fClus 𝐹 ) = if ( 𝑋 = 𝑌 , ∩ 𝑡 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) , ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fclsval.x | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | simpl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑌 ) ) → 𝐽 ∈ Top ) | |
| 3 | fvssunirn | ⊢ ( Fil ‘ 𝑌 ) ⊆ ∪ ran Fil | |
| 4 | 3 | sseli | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑌 ) → 𝐹 ∈ ∪ ran Fil ) |
| 5 | 4 | adantl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑌 ) ) → 𝐹 ∈ ∪ ran Fil ) |
| 6 | filn0 | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑌 ) → 𝐹 ≠ ∅ ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑌 ) ) → 𝐹 ≠ ∅ ) |
| 8 | fvex | ⊢ ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) ∈ V | |
| 9 | 8 | rgenw | ⊢ ∀ 𝑡 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) ∈ V |
| 10 | iinexg | ⊢ ( ( 𝐹 ≠ ∅ ∧ ∀ 𝑡 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) ∈ V ) → ∩ 𝑡 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) ∈ V ) | |
| 11 | 7 9 10 | sylancl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑌 ) ) → ∩ 𝑡 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) ∈ V ) |
| 12 | 0ex | ⊢ ∅ ∈ V | |
| 13 | ifcl | ⊢ ( ( ∩ 𝑡 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) ∈ V ∧ ∅ ∈ V ) → if ( 𝑋 = ∪ 𝐹 , ∩ 𝑡 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) , ∅ ) ∈ V ) | |
| 14 | 11 12 13 | sylancl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑌 ) ) → if ( 𝑋 = ∪ 𝐹 , ∩ 𝑡 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) , ∅ ) ∈ V ) |
| 15 | unieq | ⊢ ( 𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽 ) | |
| 16 | 15 1 | eqtr4di | ⊢ ( 𝑗 = 𝐽 → ∪ 𝑗 = 𝑋 ) |
| 17 | unieq | ⊢ ( 𝑓 = 𝐹 → ∪ 𝑓 = ∪ 𝐹 ) | |
| 18 | 16 17 | eqeqan12d | ⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → ( ∪ 𝑗 = ∪ 𝑓 ↔ 𝑋 = ∪ 𝐹 ) ) |
| 19 | iineq1 | ⊢ ( 𝑓 = 𝐹 → ∩ 𝑡 ∈ 𝑓 ( ( cls ‘ 𝑗 ) ‘ 𝑡 ) = ∩ 𝑡 ∈ 𝐹 ( ( cls ‘ 𝑗 ) ‘ 𝑡 ) ) | |
| 20 | 19 | adantl | ⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → ∩ 𝑡 ∈ 𝑓 ( ( cls ‘ 𝑗 ) ‘ 𝑡 ) = ∩ 𝑡 ∈ 𝐹 ( ( cls ‘ 𝑗 ) ‘ 𝑡 ) ) |
| 21 | simpll | ⊢ ( ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) ∧ 𝑡 ∈ 𝐹 ) → 𝑗 = 𝐽 ) | |
| 22 | 21 | fveq2d | ⊢ ( ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) ∧ 𝑡 ∈ 𝐹 ) → ( cls ‘ 𝑗 ) = ( cls ‘ 𝐽 ) ) |
| 23 | 22 | fveq1d | ⊢ ( ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) ∧ 𝑡 ∈ 𝐹 ) → ( ( cls ‘ 𝑗 ) ‘ 𝑡 ) = ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) ) |
| 24 | 23 | iineq2dv | ⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → ∩ 𝑡 ∈ 𝐹 ( ( cls ‘ 𝑗 ) ‘ 𝑡 ) = ∩ 𝑡 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) ) |
| 25 | 20 24 | eqtrd | ⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → ∩ 𝑡 ∈ 𝑓 ( ( cls ‘ 𝑗 ) ‘ 𝑡 ) = ∩ 𝑡 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) ) |
| 26 | 18 25 | ifbieq1d | ⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → if ( ∪ 𝑗 = ∪ 𝑓 , ∩ 𝑡 ∈ 𝑓 ( ( cls ‘ 𝑗 ) ‘ 𝑡 ) , ∅ ) = if ( 𝑋 = ∪ 𝐹 , ∩ 𝑡 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) , ∅ ) ) |
| 27 | df-fcls | ⊢ fClus = ( 𝑗 ∈ Top , 𝑓 ∈ ∪ ran Fil ↦ if ( ∪ 𝑗 = ∪ 𝑓 , ∩ 𝑡 ∈ 𝑓 ( ( cls ‘ 𝑗 ) ‘ 𝑡 ) , ∅ ) ) | |
| 28 | 26 27 | ovmpoga | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ if ( 𝑋 = ∪ 𝐹 , ∩ 𝑡 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) , ∅ ) ∈ V ) → ( 𝐽 fClus 𝐹 ) = if ( 𝑋 = ∪ 𝐹 , ∩ 𝑡 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) , ∅ ) ) |
| 29 | 2 5 14 28 | syl3anc | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑌 ) ) → ( 𝐽 fClus 𝐹 ) = if ( 𝑋 = ∪ 𝐹 , ∩ 𝑡 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) , ∅ ) ) |
| 30 | filunibas | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑌 ) → ∪ 𝐹 = 𝑌 ) | |
| 31 | 30 | eqeq2d | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑌 ) → ( 𝑋 = ∪ 𝐹 ↔ 𝑋 = 𝑌 ) ) |
| 32 | 31 | adantl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑌 ) ) → ( 𝑋 = ∪ 𝐹 ↔ 𝑋 = 𝑌 ) ) |
| 33 | 32 | ifbid | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑌 ) ) → if ( 𝑋 = ∪ 𝐹 , ∩ 𝑡 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) , ∅ ) = if ( 𝑋 = 𝑌 , ∩ 𝑡 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) , ∅ ) ) |
| 34 | 29 33 | eqtrd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ 𝑌 ) ) → ( 𝐽 fClus 𝐹 ) = if ( 𝑋 = 𝑌 , ∩ 𝑡 ∈ 𝐹 ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) , ∅ ) ) |