This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ring is a domain iff it is nonzero and the right cancellation law for multiplication holds. (Contributed by SN, 20-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isdomn4r.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| isdomn4r.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| isdomn4r.x | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | isdomn4r | ⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ ( 𝐵 ∖ { 0 } ) ( ( 𝑎 · 𝑐 ) = ( 𝑏 · 𝑐 ) → 𝑎 = 𝑏 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdomn4r.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | isdomn4r.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | isdomn4r.x | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) | |
| 5 | 4 1 | opprbas | ⊢ 𝐵 = ( Base ‘ ( oppr ‘ 𝑅 ) ) |
| 6 | 4 2 | oppr0 | ⊢ 0 = ( 0g ‘ ( oppr ‘ 𝑅 ) ) |
| 7 | eqid | ⊢ ( .r ‘ ( oppr ‘ 𝑅 ) ) = ( .r ‘ ( oppr ‘ 𝑅 ) ) | |
| 8 | 5 6 7 | isdomn4 | ⊢ ( ( oppr ‘ 𝑅 ) ∈ Domn ↔ ( ( oppr ‘ 𝑅 ) ∈ NzRing ∧ ∀ 𝑐 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑐 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑎 ) = ( 𝑐 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑏 ) → 𝑎 = 𝑏 ) ) ) |
| 9 | 4 | opprdomnb | ⊢ ( 𝑅 ∈ Domn ↔ ( oppr ‘ 𝑅 ) ∈ Domn ) |
| 10 | 4 | opprnzrb | ⊢ ( 𝑅 ∈ NzRing ↔ ( oppr ‘ 𝑅 ) ∈ NzRing ) |
| 11 | 1 3 4 7 | opprmul | ⊢ ( 𝑐 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑎 ) = ( 𝑎 · 𝑐 ) |
| 12 | 1 3 4 7 | opprmul | ⊢ ( 𝑐 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑏 ) = ( 𝑏 · 𝑐 ) |
| 13 | 11 12 | eqeq12i | ⊢ ( ( 𝑐 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑎 ) = ( 𝑐 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑏 ) ↔ ( 𝑎 · 𝑐 ) = ( 𝑏 · 𝑐 ) ) |
| 14 | 13 | imbi1i | ⊢ ( ( ( 𝑐 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑎 ) = ( 𝑐 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑏 ) → 𝑎 = 𝑏 ) ↔ ( ( 𝑎 · 𝑐 ) = ( 𝑏 · 𝑐 ) → 𝑎 = 𝑏 ) ) |
| 15 | 14 | 3ralbii | ⊢ ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ ( 𝐵 ∖ { 0 } ) ( ( 𝑐 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑎 ) = ( 𝑐 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑏 ) → 𝑎 = 𝑏 ) ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ ( 𝐵 ∖ { 0 } ) ( ( 𝑎 · 𝑐 ) = ( 𝑏 · 𝑐 ) → 𝑎 = 𝑏 ) ) |
| 16 | ralrot3 | ⊢ ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ ( 𝐵 ∖ { 0 } ) ( ( 𝑐 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑎 ) = ( 𝑐 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑏 ) → 𝑎 = 𝑏 ) ↔ ∀ 𝑐 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑐 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑎 ) = ( 𝑐 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑏 ) → 𝑎 = 𝑏 ) ) | |
| 17 | 15 16 | bitr3i | ⊢ ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ ( 𝐵 ∖ { 0 } ) ( ( 𝑎 · 𝑐 ) = ( 𝑏 · 𝑐 ) → 𝑎 = 𝑏 ) ↔ ∀ 𝑐 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑐 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑎 ) = ( 𝑐 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑏 ) → 𝑎 = 𝑏 ) ) |
| 18 | 10 17 | anbi12i | ⊢ ( ( 𝑅 ∈ NzRing ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ ( 𝐵 ∖ { 0 } ) ( ( 𝑎 · 𝑐 ) = ( 𝑏 · 𝑐 ) → 𝑎 = 𝑏 ) ) ↔ ( ( oppr ‘ 𝑅 ) ∈ NzRing ∧ ∀ 𝑐 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑐 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑎 ) = ( 𝑐 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑏 ) → 𝑎 = 𝑏 ) ) ) |
| 19 | 8 9 18 | 3bitr4i | ⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ ( 𝐵 ∖ { 0 } ) ( ( 𝑎 · 𝑐 ) = ( 𝑏 · 𝑐 ) → 𝑎 = 𝑏 ) ) ) |