This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ring is a domain iff it is nonzero and the right cancellation law for multiplication holds. (Contributed by SN, 20-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isdomn4r.b | |- B = ( Base ` R ) |
|
| isdomn4r.0 | |- .0. = ( 0g ` R ) |
||
| isdomn4r.x | |- .x. = ( .r ` R ) |
||
| Assertion | isdomn4r | |- ( R e. Domn <-> ( R e. NzRing /\ A. a e. B A. b e. B A. c e. ( B \ { .0. } ) ( ( a .x. c ) = ( b .x. c ) -> a = b ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdomn4r.b | |- B = ( Base ` R ) |
|
| 2 | isdomn4r.0 | |- .0. = ( 0g ` R ) |
|
| 3 | isdomn4r.x | |- .x. = ( .r ` R ) |
|
| 4 | eqid | |- ( oppR ` R ) = ( oppR ` R ) |
|
| 5 | 4 1 | opprbas | |- B = ( Base ` ( oppR ` R ) ) |
| 6 | 4 2 | oppr0 | |- .0. = ( 0g ` ( oppR ` R ) ) |
| 7 | eqid | |- ( .r ` ( oppR ` R ) ) = ( .r ` ( oppR ` R ) ) |
|
| 8 | 5 6 7 | isdomn4 | |- ( ( oppR ` R ) e. Domn <-> ( ( oppR ` R ) e. NzRing /\ A. c e. ( B \ { .0. } ) A. a e. B A. b e. B ( ( c ( .r ` ( oppR ` R ) ) a ) = ( c ( .r ` ( oppR ` R ) ) b ) -> a = b ) ) ) |
| 9 | 4 | opprdomnb | |- ( R e. Domn <-> ( oppR ` R ) e. Domn ) |
| 10 | 4 | opprnzrb | |- ( R e. NzRing <-> ( oppR ` R ) e. NzRing ) |
| 11 | 1 3 4 7 | opprmul | |- ( c ( .r ` ( oppR ` R ) ) a ) = ( a .x. c ) |
| 12 | 1 3 4 7 | opprmul | |- ( c ( .r ` ( oppR ` R ) ) b ) = ( b .x. c ) |
| 13 | 11 12 | eqeq12i | |- ( ( c ( .r ` ( oppR ` R ) ) a ) = ( c ( .r ` ( oppR ` R ) ) b ) <-> ( a .x. c ) = ( b .x. c ) ) |
| 14 | 13 | imbi1i | |- ( ( ( c ( .r ` ( oppR ` R ) ) a ) = ( c ( .r ` ( oppR ` R ) ) b ) -> a = b ) <-> ( ( a .x. c ) = ( b .x. c ) -> a = b ) ) |
| 15 | 14 | 3ralbii | |- ( A. a e. B A. b e. B A. c e. ( B \ { .0. } ) ( ( c ( .r ` ( oppR ` R ) ) a ) = ( c ( .r ` ( oppR ` R ) ) b ) -> a = b ) <-> A. a e. B A. b e. B A. c e. ( B \ { .0. } ) ( ( a .x. c ) = ( b .x. c ) -> a = b ) ) |
| 16 | ralrot3 | |- ( A. a e. B A. b e. B A. c e. ( B \ { .0. } ) ( ( c ( .r ` ( oppR ` R ) ) a ) = ( c ( .r ` ( oppR ` R ) ) b ) -> a = b ) <-> A. c e. ( B \ { .0. } ) A. a e. B A. b e. B ( ( c ( .r ` ( oppR ` R ) ) a ) = ( c ( .r ` ( oppR ` R ) ) b ) -> a = b ) ) |
|
| 17 | 15 16 | bitr3i | |- ( A. a e. B A. b e. B A. c e. ( B \ { .0. } ) ( ( a .x. c ) = ( b .x. c ) -> a = b ) <-> A. c e. ( B \ { .0. } ) A. a e. B A. b e. B ( ( c ( .r ` ( oppR ` R ) ) a ) = ( c ( .r ` ( oppR ` R ) ) b ) -> a = b ) ) |
| 18 | 10 17 | anbi12i | |- ( ( R e. NzRing /\ A. a e. B A. b e. B A. c e. ( B \ { .0. } ) ( ( a .x. c ) = ( b .x. c ) -> a = b ) ) <-> ( ( oppR ` R ) e. NzRing /\ A. c e. ( B \ { .0. } ) A. a e. B A. b e. B ( ( c ( .r ` ( oppR ` R ) ) a ) = ( c ( .r ` ( oppR ` R ) ) b ) -> a = b ) ) ) |
| 19 | 8 9 18 | 3bitr4i | |- ( R e. Domn <-> ( R e. NzRing /\ A. a e. B A. b e. B A. c e. ( B \ { .0. } ) ( ( a .x. c ) = ( b .x. c ) -> a = b ) ) ) |