This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Left-cancellation law for domains, biconditional version of domnlcan . (Contributed by Thierry Arnoux, 8-Jun-2025) Shorten this theorem and domnlcan overall. (Revised by SN, 21-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | domncan.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| domncan.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| domncan.m | ⊢ · = ( .r ‘ 𝑅 ) | ||
| domncan.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ) | ||
| domncan.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| domncan.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| domncan.r | ⊢ ( 𝜑 → 𝑅 ∈ Domn ) | ||
| Assertion | domnlcanb | ⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑍 ) ↔ 𝑌 = 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domncan.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | domncan.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | domncan.m | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | domncan.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ) | |
| 5 | domncan.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | domncan.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 7 | domncan.r | ⊢ ( 𝜑 → 𝑅 ∈ Domn ) | |
| 8 | oveq1 | ⊢ ( 𝑎 = 𝑋 → ( 𝑎 · 𝑏 ) = ( 𝑋 · 𝑏 ) ) | |
| 9 | oveq1 | ⊢ ( 𝑎 = 𝑋 → ( 𝑎 · 𝑐 ) = ( 𝑋 · 𝑐 ) ) | |
| 10 | 8 9 | eqeq12d | ⊢ ( 𝑎 = 𝑋 → ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 𝑐 ) ↔ ( 𝑋 · 𝑏 ) = ( 𝑋 · 𝑐 ) ) ) |
| 11 | 10 | imbi1d | ⊢ ( 𝑎 = 𝑋 → ( ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 𝑐 ) → 𝑏 = 𝑐 ) ↔ ( ( 𝑋 · 𝑏 ) = ( 𝑋 · 𝑐 ) → 𝑏 = 𝑐 ) ) ) |
| 12 | oveq2 | ⊢ ( 𝑏 = 𝑌 → ( 𝑋 · 𝑏 ) = ( 𝑋 · 𝑌 ) ) | |
| 13 | 12 | eqeq1d | ⊢ ( 𝑏 = 𝑌 → ( ( 𝑋 · 𝑏 ) = ( 𝑋 · 𝑐 ) ↔ ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑐 ) ) ) |
| 14 | eqeq1 | ⊢ ( 𝑏 = 𝑌 → ( 𝑏 = 𝑐 ↔ 𝑌 = 𝑐 ) ) | |
| 15 | 13 14 | imbi12d | ⊢ ( 𝑏 = 𝑌 → ( ( ( 𝑋 · 𝑏 ) = ( 𝑋 · 𝑐 ) → 𝑏 = 𝑐 ) ↔ ( ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑐 ) → 𝑌 = 𝑐 ) ) ) |
| 16 | oveq2 | ⊢ ( 𝑐 = 𝑍 → ( 𝑋 · 𝑐 ) = ( 𝑋 · 𝑍 ) ) | |
| 17 | 16 | eqeq2d | ⊢ ( 𝑐 = 𝑍 → ( ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑐 ) ↔ ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑍 ) ) ) |
| 18 | eqeq2 | ⊢ ( 𝑐 = 𝑍 → ( 𝑌 = 𝑐 ↔ 𝑌 = 𝑍 ) ) | |
| 19 | 17 18 | imbi12d | ⊢ ( 𝑐 = 𝑍 → ( ( ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑐 ) → 𝑌 = 𝑐 ) ↔ ( ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑍 ) → 𝑌 = 𝑍 ) ) ) |
| 20 | 1 2 3 | isdomn4 | ⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ∀ 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 𝑐 ) → 𝑏 = 𝑐 ) ) ) |
| 21 | 7 20 | sylib | ⊢ ( 𝜑 → ( 𝑅 ∈ NzRing ∧ ∀ 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 𝑐 ) → 𝑏 = 𝑐 ) ) ) |
| 22 | 21 | simprd | ⊢ ( 𝜑 → ∀ 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 𝑐 ) → 𝑏 = 𝑐 ) ) |
| 23 | 11 15 19 22 4 5 6 | rspc3dv | ⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑍 ) → 𝑌 = 𝑍 ) ) |
| 24 | oveq2 | ⊢ ( 𝑌 = 𝑍 → ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑍 ) ) | |
| 25 | 23 24 | impbid1 | ⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) = ( 𝑋 · 𝑍 ) ↔ 𝑌 = 𝑍 ) ) |