This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of isdomn2 as of 21-Jun-2025. (Contributed by Mario Carneiro, 28-Mar-2015) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isdomn2.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| isdomn2.t | ⊢ 𝐸 = ( RLReg ‘ 𝑅 ) | ||
| isdomn2.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | isdomn2OLD | ⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ( 𝐵 ∖ { 0 } ) ⊆ 𝐸 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdomn2.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | isdomn2.t | ⊢ 𝐸 = ( RLReg ‘ 𝑅 ) | |
| 3 | isdomn2.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 5 | 1 4 3 | isdomn | ⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) ) |
| 6 | dfss3 | ⊢ ( ( 𝐵 ∖ { 0 } ) ⊆ 𝐸 ↔ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) 𝑥 ∈ 𝐸 ) | |
| 7 | 2 1 4 3 | isrrg | ⊢ ( 𝑥 ∈ 𝐸 ↔ ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → 𝑦 = 0 ) ) ) |
| 8 | 7 | baib | ⊢ ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐸 ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → 𝑦 = 0 ) ) ) |
| 9 | 8 | imbi2d | ⊢ ( 𝑥 ∈ 𝐵 → ( ( 𝑥 ≠ 0 → 𝑥 ∈ 𝐸 ) ↔ ( 𝑥 ≠ 0 → ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → 𝑦 = 0 ) ) ) ) |
| 10 | 9 | ralbiia | ⊢ ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≠ 0 → 𝑥 ∈ 𝐸 ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≠ 0 → ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → 𝑦 = 0 ) ) ) |
| 11 | eldifsn | ⊢ ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) | |
| 12 | 11 | imbi1i | ⊢ ( ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) → 𝑥 ∈ 𝐸 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) → 𝑥 ∈ 𝐸 ) ) |
| 13 | impexp | ⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) → 𝑥 ∈ 𝐸 ) ↔ ( 𝑥 ∈ 𝐵 → ( 𝑥 ≠ 0 → 𝑥 ∈ 𝐸 ) ) ) | |
| 14 | 12 13 | bitri | ⊢ ( ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) → 𝑥 ∈ 𝐸 ) ↔ ( 𝑥 ∈ 𝐵 → ( 𝑥 ≠ 0 → 𝑥 ∈ 𝐸 ) ) ) |
| 15 | 14 | ralbii2 | ⊢ ( ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) 𝑥 ∈ 𝐸 ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≠ 0 → 𝑥 ∈ 𝐸 ) ) |
| 16 | con34b | ⊢ ( ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ↔ ( ¬ ( 𝑥 = 0 ∨ 𝑦 = 0 ) → ¬ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 ) ) | |
| 17 | impexp | ⊢ ( ( ( ¬ 𝑥 = 0 ∧ ¬ 𝑦 = 0 ) → ¬ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 ) ↔ ( ¬ 𝑥 = 0 → ( ¬ 𝑦 = 0 → ¬ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 ) ) ) | |
| 18 | ioran | ⊢ ( ¬ ( 𝑥 = 0 ∨ 𝑦 = 0 ) ↔ ( ¬ 𝑥 = 0 ∧ ¬ 𝑦 = 0 ) ) | |
| 19 | 18 | imbi1i | ⊢ ( ( ¬ ( 𝑥 = 0 ∨ 𝑦 = 0 ) → ¬ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 ) ↔ ( ( ¬ 𝑥 = 0 ∧ ¬ 𝑦 = 0 ) → ¬ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 ) ) |
| 20 | df-ne | ⊢ ( 𝑥 ≠ 0 ↔ ¬ 𝑥 = 0 ) | |
| 21 | con34b | ⊢ ( ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → 𝑦 = 0 ) ↔ ( ¬ 𝑦 = 0 → ¬ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 ) ) | |
| 22 | 20 21 | imbi12i | ⊢ ( ( 𝑥 ≠ 0 → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → 𝑦 = 0 ) ) ↔ ( ¬ 𝑥 = 0 → ( ¬ 𝑦 = 0 → ¬ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 ) ) ) |
| 23 | 17 19 22 | 3bitr4i | ⊢ ( ( ¬ ( 𝑥 = 0 ∨ 𝑦 = 0 ) → ¬ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 ) ↔ ( 𝑥 ≠ 0 → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → 𝑦 = 0 ) ) ) |
| 24 | 16 23 | bitri | ⊢ ( ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ↔ ( 𝑥 ≠ 0 → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → 𝑦 = 0 ) ) ) |
| 25 | 24 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≠ 0 → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → 𝑦 = 0 ) ) ) |
| 26 | r19.21v | ⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≠ 0 → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → 𝑦 = 0 ) ) ↔ ( 𝑥 ≠ 0 → ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → 𝑦 = 0 ) ) ) | |
| 27 | 25 26 | bitri | ⊢ ( ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ↔ ( 𝑥 ≠ 0 → ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → 𝑦 = 0 ) ) ) |
| 28 | 27 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≠ 0 → ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → 𝑦 = 0 ) ) ) |
| 29 | 10 15 28 | 3bitr4i | ⊢ ( ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) 𝑥 ∈ 𝐸 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) |
| 30 | 6 29 | bitr2i | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ↔ ( 𝐵 ∖ { 0 } ) ⊆ 𝐸 ) |
| 31 | 30 | anbi2i | ⊢ ( ( 𝑅 ∈ NzRing ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = 0 → ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ) ↔ ( 𝑅 ∈ NzRing ∧ ( 𝐵 ∖ { 0 } ) ⊆ 𝐸 ) ) |
| 32 | 5 31 | bitri | ⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ( 𝐵 ∖ { 0 } ) ⊆ 𝐸 ) ) |