This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the set of left-regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrgval.e | ⊢ 𝐸 = ( RLReg ‘ 𝑅 ) | |
| rrgval.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| rrgval.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| rrgval.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | isrrg | ⊢ ( 𝑋 ∈ 𝐸 ↔ ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑋 · 𝑦 ) = 0 → 𝑦 = 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrgval.e | ⊢ 𝐸 = ( RLReg ‘ 𝑅 ) | |
| 2 | rrgval.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | rrgval.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | rrgval.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 5 | oveq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑦 ) ) | |
| 6 | 5 | eqeq1d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 · 𝑦 ) = 0 ↔ ( 𝑋 · 𝑦 ) = 0 ) ) |
| 7 | 6 | imbi1d | ⊢ ( 𝑥 = 𝑋 → ( ( ( 𝑥 · 𝑦 ) = 0 → 𝑦 = 0 ) ↔ ( ( 𝑋 · 𝑦 ) = 0 → 𝑦 = 0 ) ) ) |
| 8 | 7 | ralbidv | ⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 0 → 𝑦 = 0 ) ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝑋 · 𝑦 ) = 0 → 𝑦 = 0 ) ) ) |
| 9 | 1 2 3 4 | rrgval | ⊢ 𝐸 = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 0 → 𝑦 = 0 ) } |
| 10 | 8 9 | elrab2 | ⊢ ( 𝑋 ∈ 𝐸 ↔ ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑋 · 𝑦 ) = 0 → 𝑦 = 0 ) ) ) |