This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of isdomn2 as of 21-Jun-2025. (Contributed by Mario Carneiro, 28-Mar-2015) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isdomn2.b | |- B = ( Base ` R ) |
|
| isdomn2.t | |- E = ( RLReg ` R ) |
||
| isdomn2.z | |- .0. = ( 0g ` R ) |
||
| Assertion | isdomn2OLD | |- ( R e. Domn <-> ( R e. NzRing /\ ( B \ { .0. } ) C_ E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdomn2.b | |- B = ( Base ` R ) |
|
| 2 | isdomn2.t | |- E = ( RLReg ` R ) |
|
| 3 | isdomn2.z | |- .0. = ( 0g ` R ) |
|
| 4 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 5 | 1 4 3 | isdomn | |- ( R e. Domn <-> ( R e. NzRing /\ A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) ) |
| 6 | dfss3 | |- ( ( B \ { .0. } ) C_ E <-> A. x e. ( B \ { .0. } ) x e. E ) |
|
| 7 | 2 1 4 3 | isrrg | |- ( x e. E <-> ( x e. B /\ A. y e. B ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) ) |
| 8 | 7 | baib | |- ( x e. B -> ( x e. E <-> A. y e. B ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) ) |
| 9 | 8 | imbi2d | |- ( x e. B -> ( ( x =/= .0. -> x e. E ) <-> ( x =/= .0. -> A. y e. B ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) ) ) |
| 10 | 9 | ralbiia | |- ( A. x e. B ( x =/= .0. -> x e. E ) <-> A. x e. B ( x =/= .0. -> A. y e. B ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) ) |
| 11 | eldifsn | |- ( x e. ( B \ { .0. } ) <-> ( x e. B /\ x =/= .0. ) ) |
|
| 12 | 11 | imbi1i | |- ( ( x e. ( B \ { .0. } ) -> x e. E ) <-> ( ( x e. B /\ x =/= .0. ) -> x e. E ) ) |
| 13 | impexp | |- ( ( ( x e. B /\ x =/= .0. ) -> x e. E ) <-> ( x e. B -> ( x =/= .0. -> x e. E ) ) ) |
|
| 14 | 12 13 | bitri | |- ( ( x e. ( B \ { .0. } ) -> x e. E ) <-> ( x e. B -> ( x =/= .0. -> x e. E ) ) ) |
| 15 | 14 | ralbii2 | |- ( A. x e. ( B \ { .0. } ) x e. E <-> A. x e. B ( x =/= .0. -> x e. E ) ) |
| 16 | con34b | |- ( ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) <-> ( -. ( x = .0. \/ y = .0. ) -> -. ( x ( .r ` R ) y ) = .0. ) ) |
|
| 17 | impexp | |- ( ( ( -. x = .0. /\ -. y = .0. ) -> -. ( x ( .r ` R ) y ) = .0. ) <-> ( -. x = .0. -> ( -. y = .0. -> -. ( x ( .r ` R ) y ) = .0. ) ) ) |
|
| 18 | ioran | |- ( -. ( x = .0. \/ y = .0. ) <-> ( -. x = .0. /\ -. y = .0. ) ) |
|
| 19 | 18 | imbi1i | |- ( ( -. ( x = .0. \/ y = .0. ) -> -. ( x ( .r ` R ) y ) = .0. ) <-> ( ( -. x = .0. /\ -. y = .0. ) -> -. ( x ( .r ` R ) y ) = .0. ) ) |
| 20 | df-ne | |- ( x =/= .0. <-> -. x = .0. ) |
|
| 21 | con34b | |- ( ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) <-> ( -. y = .0. -> -. ( x ( .r ` R ) y ) = .0. ) ) |
|
| 22 | 20 21 | imbi12i | |- ( ( x =/= .0. -> ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) <-> ( -. x = .0. -> ( -. y = .0. -> -. ( x ( .r ` R ) y ) = .0. ) ) ) |
| 23 | 17 19 22 | 3bitr4i | |- ( ( -. ( x = .0. \/ y = .0. ) -> -. ( x ( .r ` R ) y ) = .0. ) <-> ( x =/= .0. -> ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) ) |
| 24 | 16 23 | bitri | |- ( ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) <-> ( x =/= .0. -> ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) ) |
| 25 | 24 | ralbii | |- ( A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) <-> A. y e. B ( x =/= .0. -> ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) ) |
| 26 | r19.21v | |- ( A. y e. B ( x =/= .0. -> ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) <-> ( x =/= .0. -> A. y e. B ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) ) |
|
| 27 | 25 26 | bitri | |- ( A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) <-> ( x =/= .0. -> A. y e. B ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) ) |
| 28 | 27 | ralbii | |- ( A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) <-> A. x e. B ( x =/= .0. -> A. y e. B ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) ) |
| 29 | 10 15 28 | 3bitr4i | |- ( A. x e. ( B \ { .0. } ) x e. E <-> A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) |
| 30 | 6 29 | bitr2i | |- ( A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) <-> ( B \ { .0. } ) C_ E ) |
| 31 | 30 | anbi2i | |- ( ( R e. NzRing /\ A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) <-> ( R e. NzRing /\ ( B \ { .0. } ) C_ E ) ) |
| 32 | 5 31 | bitri | |- ( R e. Domn <-> ( R e. NzRing /\ ( B \ { .0. } ) C_ E ) ) |