This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ring is a domain iff all nonzero elements are regular elements. (Contributed by Mario Carneiro, 28-Mar-2015) (Proof shortened by SN, 21-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isdomn2.b | |- B = ( Base ` R ) |
|
| isdomn2.t | |- E = ( RLReg ` R ) |
||
| isdomn2.z | |- .0. = ( 0g ` R ) |
||
| Assertion | isdomn2 | |- ( R e. Domn <-> ( R e. NzRing /\ ( B \ { .0. } ) C_ E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdomn2.b | |- B = ( Base ` R ) |
|
| 2 | isdomn2.t | |- E = ( RLReg ` R ) |
|
| 3 | isdomn2.z | |- .0. = ( 0g ` R ) |
|
| 4 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 5 | 1 4 3 | isdomn | |- ( R e. Domn <-> ( R e. NzRing /\ A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) ) |
| 6 | eldifi | |- ( x e. ( B \ { .0. } ) -> x e. B ) |
|
| 7 | 2 1 4 3 | isrrg | |- ( x e. E <-> ( x e. B /\ A. y e. B ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) ) |
| 8 | 7 | baib | |- ( x e. B -> ( x e. E <-> A. y e. B ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) ) |
| 9 | 6 8 | syl | |- ( x e. ( B \ { .0. } ) -> ( x e. E <-> A. y e. B ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) ) |
| 10 | 9 | ralbiia | |- ( A. x e. ( B \ { .0. } ) x e. E <-> A. x e. ( B \ { .0. } ) A. y e. B ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) |
| 11 | dfss3 | |- ( ( B \ { .0. } ) C_ E <-> A. x e. ( B \ { .0. } ) x e. E ) |
|
| 12 | isdomn5 | |- ( A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) <-> A. x e. ( B \ { .0. } ) A. y e. B ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) |
|
| 13 | 10 11 12 | 3bitr4ri | |- ( A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) <-> ( B \ { .0. } ) C_ E ) |
| 14 | 13 | anbi2i | |- ( ( R e. NzRing /\ A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) <-> ( R e. NzRing /\ ( B \ { .0. } ) C_ E ) ) |
| 15 | 5 14 | bitri | |- ( R e. Domn <-> ( R e. NzRing /\ ( B \ { .0. } ) C_ E ) ) |