This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ring is a domain iff all nonzero elements are regular elements. (Contributed by Mario Carneiro, 28-Mar-2015) (Proof shortened by SN, 21-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isdomn2.b | ||
| isdomn2.t | |||
| isdomn2.z | |||
| Assertion | isdomn2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdomn2.b | ||
| 2 | isdomn2.t | ||
| 3 | isdomn2.z | ||
| 4 | eqid | ||
| 5 | 1 4 3 | isdomn | |
| 6 | eldifi | ||
| 7 | 2 1 4 3 | isrrg | |
| 8 | 7 | baib | |
| 9 | 6 8 | syl | |
| 10 | 9 | ralbiia | |
| 11 | dfss3 | ||
| 12 | isdomn5 | ||
| 13 | 10 11 12 | 3bitr4ri | |
| 14 | 13 | anbi2i | |
| 15 | 5 14 | bitri |