This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conditions that determine a commutative ring. (Contributed by Jeff Madsen, 20-Jun-2011) (Revised by Mario Carneiro, 23-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscringd.1 | ⊢ ( 𝜑 → 𝐺 ∈ AbelOp ) | |
| iscringd.2 | ⊢ ( 𝜑 → 𝑋 = ran 𝐺 ) | ||
| iscringd.3 | ⊢ ( 𝜑 → 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) | ||
| iscringd.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ) | ||
| iscringd.5 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ) | ||
| iscringd.6 | ⊢ ( 𝜑 → 𝑈 ∈ 𝑋 ) | ||
| iscringd.7 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑦 𝐻 𝑈 ) = 𝑦 ) | ||
| iscringd.8 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ) | ||
| Assertion | iscringd | ⊢ ( 𝜑 → 〈 𝐺 , 𝐻 〉 ∈ CRingOps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscringd.1 | ⊢ ( 𝜑 → 𝐺 ∈ AbelOp ) | |
| 2 | iscringd.2 | ⊢ ( 𝜑 → 𝑋 = ran 𝐺 ) | |
| 3 | iscringd.3 | ⊢ ( 𝜑 → 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) | |
| 4 | iscringd.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑥 𝐻 𝑦 ) 𝐻 𝑧 ) = ( 𝑥 𝐻 ( 𝑦 𝐻 𝑧 ) ) ) | |
| 5 | iscringd.5 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) ) | |
| 6 | iscringd.6 | ⊢ ( 𝜑 → 𝑈 ∈ 𝑋 ) | |
| 7 | iscringd.7 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑦 𝐻 𝑈 ) = 𝑦 ) | |
| 8 | iscringd.8 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ) | |
| 9 | id | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) | |
| 10 | 9 | 3com13 | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) |
| 11 | eleq1 | ⊢ ( 𝑤 = 𝑧 → ( 𝑤 ∈ 𝑋 ↔ 𝑧 ∈ 𝑋 ) ) | |
| 12 | 11 | 3anbi1d | ⊢ ( 𝑤 = 𝑧 → ( ( 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ↔ ( 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) ) |
| 13 | 12 | anbi2d | ⊢ ( 𝑤 = 𝑧 → ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) ↔ ( 𝜑 ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) ) ) |
| 14 | oveq2 | ⊢ ( 𝑤 = 𝑧 → ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑤 ) = ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) ) | |
| 15 | oveq2 | ⊢ ( 𝑤 = 𝑧 → ( 𝑥 𝐻 𝑤 ) = ( 𝑥 𝐻 𝑧 ) ) | |
| 16 | oveq2 | ⊢ ( 𝑤 = 𝑧 → ( 𝑦 𝐻 𝑤 ) = ( 𝑦 𝐻 𝑧 ) ) | |
| 17 | 15 16 | oveq12d | ⊢ ( 𝑤 = 𝑧 → ( ( 𝑥 𝐻 𝑤 ) 𝐺 ( 𝑦 𝐻 𝑤 ) ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) |
| 18 | 14 17 | eqeq12d | ⊢ ( 𝑤 = 𝑧 → ( ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑤 ) = ( ( 𝑥 𝐻 𝑤 ) 𝐺 ( 𝑦 𝐻 𝑤 ) ) ↔ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ) |
| 19 | 13 18 | imbi12d | ⊢ ( 𝑤 = 𝑧 → ( ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑤 ) = ( ( 𝑥 𝐻 𝑤 ) 𝐺 ( 𝑦 𝐻 𝑤 ) ) ) ↔ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) ) ) |
| 20 | eleq1 | ⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∈ 𝑋 ↔ 𝑥 ∈ 𝑋 ) ) | |
| 21 | 20 | 3anbi3d | ⊢ ( 𝑧 = 𝑥 → ( ( 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ↔ ( 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) ) |
| 22 | 21 | anbi2d | ⊢ ( 𝑧 = 𝑥 → ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ↔ ( 𝜑 ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) ) ) |
| 23 | oveq1 | ⊢ ( 𝑧 = 𝑥 → ( 𝑧 𝐺 𝑦 ) = ( 𝑥 𝐺 𝑦 ) ) | |
| 24 | 23 | oveq1d | ⊢ ( 𝑧 = 𝑥 → ( ( 𝑧 𝐺 𝑦 ) 𝐻 𝑤 ) = ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑤 ) ) |
| 25 | oveq1 | ⊢ ( 𝑧 = 𝑥 → ( 𝑧 𝐻 𝑤 ) = ( 𝑥 𝐻 𝑤 ) ) | |
| 26 | 25 | oveq1d | ⊢ ( 𝑧 = 𝑥 → ( ( 𝑧 𝐻 𝑤 ) 𝐺 ( 𝑦 𝐻 𝑤 ) ) = ( ( 𝑥 𝐻 𝑤 ) 𝐺 ( 𝑦 𝐻 𝑤 ) ) ) |
| 27 | 24 26 | eqeq12d | ⊢ ( 𝑧 = 𝑥 → ( ( ( 𝑧 𝐺 𝑦 ) 𝐻 𝑤 ) = ( ( 𝑧 𝐻 𝑤 ) 𝐺 ( 𝑦 𝐻 𝑤 ) ) ↔ ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑤 ) = ( ( 𝑥 𝐻 𝑤 ) 𝐺 ( 𝑦 𝐻 𝑤 ) ) ) ) |
| 28 | 22 27 | imbi12d | ⊢ ( 𝑧 = 𝑥 → ( ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑧 𝐺 𝑦 ) 𝐻 𝑤 ) = ( ( 𝑧 𝐻 𝑤 ) 𝐺 ( 𝑦 𝐻 𝑤 ) ) ) ↔ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑤 ) = ( ( 𝑥 𝐻 𝑤 ) 𝐺 ( 𝑦 𝐻 𝑤 ) ) ) ) ) |
| 29 | eleq1 | ⊢ ( 𝑥 = 𝑤 → ( 𝑥 ∈ 𝑋 ↔ 𝑤 ∈ 𝑋 ) ) | |
| 30 | 29 | 3anbi1d | ⊢ ( 𝑥 = 𝑤 → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ↔ ( 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ) |
| 31 | 30 | anbi2d | ⊢ ( 𝑥 = 𝑤 → ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ↔ ( 𝜑 ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ) ) |
| 32 | oveq2 | ⊢ ( 𝑥 = 𝑤 → ( ( 𝑧 𝐺 𝑦 ) 𝐻 𝑥 ) = ( ( 𝑧 𝐺 𝑦 ) 𝐻 𝑤 ) ) | |
| 33 | oveq2 | ⊢ ( 𝑥 = 𝑤 → ( 𝑧 𝐻 𝑥 ) = ( 𝑧 𝐻 𝑤 ) ) | |
| 34 | oveq2 | ⊢ ( 𝑥 = 𝑤 → ( 𝑦 𝐻 𝑥 ) = ( 𝑦 𝐻 𝑤 ) ) | |
| 35 | 33 34 | oveq12d | ⊢ ( 𝑥 = 𝑤 → ( ( 𝑧 𝐻 𝑥 ) 𝐺 ( 𝑦 𝐻 𝑥 ) ) = ( ( 𝑧 𝐻 𝑤 ) 𝐺 ( 𝑦 𝐻 𝑤 ) ) ) |
| 36 | 32 35 | eqeq12d | ⊢ ( 𝑥 = 𝑤 → ( ( ( 𝑧 𝐺 𝑦 ) 𝐻 𝑥 ) = ( ( 𝑧 𝐻 𝑥 ) 𝐺 ( 𝑦 𝐻 𝑥 ) ) ↔ ( ( 𝑧 𝐺 𝑦 ) 𝐻 𝑤 ) = ( ( 𝑧 𝐻 𝑤 ) 𝐺 ( 𝑦 𝐻 𝑤 ) ) ) ) |
| 37 | 31 36 | imbi12d | ⊢ ( 𝑥 = 𝑤 → ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑧 𝐺 𝑦 ) 𝐻 𝑥 ) = ( ( 𝑧 𝐻 𝑥 ) 𝐺 ( 𝑦 𝐻 𝑥 ) ) ) ↔ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑧 𝐺 𝑦 ) 𝐻 𝑤 ) = ( ( 𝑧 𝐻 𝑤 ) 𝐺 ( 𝑦 𝐻 𝑤 ) ) ) ) ) |
| 38 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝐺 ∈ AbelOp ) |
| 39 | simpr3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑧 ∈ 𝑋 ) | |
| 40 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑋 = ran 𝐺 ) |
| 41 | 39 40 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑧 ∈ ran 𝐺 ) |
| 42 | simpr2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑦 ∈ 𝑋 ) | |
| 43 | 42 40 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑦 ∈ ran 𝐺 ) |
| 44 | eqid | ⊢ ran 𝐺 = ran 𝐺 | |
| 45 | 44 | ablocom | ⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝑧 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺 ) → ( 𝑧 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑧 ) ) |
| 46 | 38 41 43 45 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑧 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑧 ) ) |
| 47 | 46 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑧 𝐺 𝑦 ) 𝐻 𝑥 ) = ( ( 𝑦 𝐺 𝑧 ) 𝐻 𝑥 ) ) |
| 48 | simpr1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑥 ∈ 𝑋 ) | |
| 49 | ablogrpo | ⊢ ( 𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp ) | |
| 50 | 38 49 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝐺 ∈ GrpOp ) |
| 51 | 44 | grpocl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑦 ∈ ran 𝐺 ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑦 𝐺 𝑧 ) ∈ ran 𝐺 ) |
| 52 | 50 43 41 51 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 𝐺 𝑧 ) ∈ ran 𝐺 ) |
| 53 | 52 40 | eleqtrrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 𝐺 𝑧 ) ∈ 𝑋 ) |
| 54 | 48 53 | jca | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 ∈ 𝑋 ∧ ( 𝑦 𝐺 𝑧 ) ∈ 𝑋 ) ) |
| 55 | ovex | ⊢ ( 𝑦 𝐺 𝑧 ) ∈ V | |
| 56 | eleq1 | ⊢ ( 𝑤 = ( 𝑦 𝐺 𝑧 ) → ( 𝑤 ∈ 𝑋 ↔ ( 𝑦 𝐺 𝑧 ) ∈ 𝑋 ) ) | |
| 57 | 56 | anbi2d | ⊢ ( 𝑤 = ( 𝑦 𝐺 𝑧 ) → ( ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑦 𝐺 𝑧 ) ∈ 𝑋 ) ) ) |
| 58 | 57 | anbi2d | ⊢ ( 𝑤 = ( 𝑦 𝐺 𝑧 ) → ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ↔ ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑦 𝐺 𝑧 ) ∈ 𝑋 ) ) ) ) |
| 59 | oveq2 | ⊢ ( 𝑤 = ( 𝑦 𝐺 𝑧 ) → ( 𝑥 𝐻 𝑤 ) = ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) ) | |
| 60 | oveq1 | ⊢ ( 𝑤 = ( 𝑦 𝐺 𝑧 ) → ( 𝑤 𝐻 𝑥 ) = ( ( 𝑦 𝐺 𝑧 ) 𝐻 𝑥 ) ) | |
| 61 | 59 60 | eqeq12d | ⊢ ( 𝑤 = ( 𝑦 𝐺 𝑧 ) → ( ( 𝑥 𝐻 𝑤 ) = ( 𝑤 𝐻 𝑥 ) ↔ ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑦 𝐺 𝑧 ) 𝐻 𝑥 ) ) ) |
| 62 | 58 61 | imbi12d | ⊢ ( 𝑤 = ( 𝑦 𝐺 𝑧 ) → ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝑥 𝐻 𝑤 ) = ( 𝑤 𝐻 𝑥 ) ) ↔ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑦 𝐺 𝑧 ) ∈ 𝑋 ) ) → ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑦 𝐺 𝑧 ) 𝐻 𝑥 ) ) ) ) |
| 63 | eleq1 | ⊢ ( 𝑦 = 𝑤 → ( 𝑦 ∈ 𝑋 ↔ 𝑤 ∈ 𝑋 ) ) | |
| 64 | 63 | anbi2d | ⊢ ( 𝑦 = 𝑤 → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ) |
| 65 | 64 | anbi2d | ⊢ ( 𝑦 = 𝑤 → ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ↔ ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ) ) |
| 66 | oveq2 | ⊢ ( 𝑦 = 𝑤 → ( 𝑥 𝐻 𝑦 ) = ( 𝑥 𝐻 𝑤 ) ) | |
| 67 | oveq1 | ⊢ ( 𝑦 = 𝑤 → ( 𝑦 𝐻 𝑥 ) = ( 𝑤 𝐻 𝑥 ) ) | |
| 68 | 66 67 | eqeq12d | ⊢ ( 𝑦 = 𝑤 → ( ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ↔ ( 𝑥 𝐻 𝑤 ) = ( 𝑤 𝐻 𝑥 ) ) ) |
| 69 | 65 68 | imbi12d | ⊢ ( 𝑦 = 𝑤 → ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ) ↔ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝑥 𝐻 𝑤 ) = ( 𝑤 𝐻 𝑥 ) ) ) ) |
| 70 | 69 8 | chvarvv | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝑥 𝐻 𝑤 ) = ( 𝑤 𝐻 𝑥 ) ) |
| 71 | 55 62 70 | vtocl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑦 𝐺 𝑧 ) ∈ 𝑋 ) ) → ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑦 𝐺 𝑧 ) 𝐻 𝑥 ) ) |
| 72 | 54 71 | syldan | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑦 𝐺 𝑧 ) 𝐻 𝑥 ) ) |
| 73 | 8 | 3adantr3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ) |
| 74 | eleq1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∈ 𝑋 ↔ 𝑧 ∈ 𝑋 ) ) | |
| 75 | 74 | anbi2d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ) |
| 76 | 75 | anbi2d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ↔ ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ) ) |
| 77 | oveq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝑥 𝐻 𝑦 ) = ( 𝑥 𝐻 𝑧 ) ) | |
| 78 | oveq1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 𝐻 𝑥 ) = ( 𝑧 𝐻 𝑥 ) ) | |
| 79 | 77 78 | eqeq12d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ↔ ( 𝑥 𝐻 𝑧 ) = ( 𝑧 𝐻 𝑥 ) ) ) |
| 80 | 76 79 | imbi12d | ⊢ ( 𝑦 = 𝑧 → ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ) ↔ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 𝐻 𝑧 ) = ( 𝑧 𝐻 𝑥 ) ) ) ) |
| 81 | 80 8 | chvarvv | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 𝐻 𝑧 ) = ( 𝑧 𝐻 𝑥 ) ) |
| 82 | 81 | 3adantr2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 𝐻 𝑧 ) = ( 𝑧 𝐻 𝑥 ) ) |
| 83 | 73 82 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑥 𝐻 𝑦 ) 𝐺 ( 𝑥 𝐻 𝑧 ) ) = ( ( 𝑦 𝐻 𝑥 ) 𝐺 ( 𝑧 𝐻 𝑥 ) ) ) |
| 84 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
| 85 | 84 42 48 | fovcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 𝐻 𝑥 ) ∈ 𝑋 ) |
| 86 | 85 40 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 𝐻 𝑥 ) ∈ ran 𝐺 ) |
| 87 | 84 39 48 | fovcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑧 𝐻 𝑥 ) ∈ 𝑋 ) |
| 88 | 87 40 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑧 𝐻 𝑥 ) ∈ ran 𝐺 ) |
| 89 | 44 | ablocom | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝑦 𝐻 𝑥 ) ∈ ran 𝐺 ∧ ( 𝑧 𝐻 𝑥 ) ∈ ran 𝐺 ) → ( ( 𝑦 𝐻 𝑥 ) 𝐺 ( 𝑧 𝐻 𝑥 ) ) = ( ( 𝑧 𝐻 𝑥 ) 𝐺 ( 𝑦 𝐻 𝑥 ) ) ) |
| 90 | 38 86 88 89 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑦 𝐻 𝑥 ) 𝐺 ( 𝑧 𝐻 𝑥 ) ) = ( ( 𝑧 𝐻 𝑥 ) 𝐺 ( 𝑦 𝐻 𝑥 ) ) ) |
| 91 | 5 83 90 | 3eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 𝐻 ( 𝑦 𝐺 𝑧 ) ) = ( ( 𝑧 𝐻 𝑥 ) 𝐺 ( 𝑦 𝐻 𝑥 ) ) ) |
| 92 | 47 72 91 | 3eqtr2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑧 𝐺 𝑦 ) 𝐻 𝑥 ) = ( ( 𝑧 𝐻 𝑥 ) 𝐺 ( 𝑦 𝐻 𝑥 ) ) ) |
| 93 | 37 92 | chvarvv | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑧 𝐺 𝑦 ) 𝐻 𝑤 ) = ( ( 𝑧 𝐻 𝑤 ) 𝐺 ( 𝑦 𝐻 𝑤 ) ) ) |
| 94 | 28 93 | chvarvv | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑤 ) = ( ( 𝑥 𝐻 𝑤 ) 𝐺 ( 𝑦 𝐻 𝑤 ) ) ) |
| 95 | 19 94 | chvarvv | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) |
| 96 | 10 95 | sylan2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑥 𝐺 𝑦 ) 𝐻 𝑧 ) = ( ( 𝑥 𝐻 𝑧 ) 𝐺 ( 𝑦 𝐻 𝑧 ) ) ) |
| 97 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → 𝑈 ∈ 𝑋 ) |
| 98 | oveq1 | ⊢ ( 𝑥 = 𝑈 → ( 𝑥 𝐻 𝑦 ) = ( 𝑈 𝐻 𝑦 ) ) | |
| 99 | oveq2 | ⊢ ( 𝑥 = 𝑈 → ( 𝑦 𝐻 𝑥 ) = ( 𝑦 𝐻 𝑈 ) ) | |
| 100 | 98 99 | eqeq12d | ⊢ ( 𝑥 = 𝑈 → ( ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ↔ ( 𝑈 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑈 ) ) ) |
| 101 | 100 | imbi2d | ⊢ ( 𝑥 = 𝑈 → ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑈 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑈 ) ) ) ) |
| 102 | 8 | an12s | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ) |
| 103 | 102 | ex | ⊢ ( 𝑥 ∈ 𝑋 → ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ) ) |
| 104 | 101 103 | vtoclga | ⊢ ( 𝑈 ∈ 𝑋 → ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑈 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑈 ) ) ) |
| 105 | 97 104 | mpcom | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑈 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑈 ) ) |
| 106 | 105 7 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑈 𝐻 𝑦 ) = 𝑦 ) |
| 107 | 1 2 3 4 5 96 6 106 7 | isrngod | ⊢ ( 𝜑 → 〈 𝐺 , 𝐻 〉 ∈ RingOps ) |
| 108 | 2 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↔ 𝑥 ∈ ran 𝐺 ) ) |
| 109 | 2 | eleq2d | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑋 ↔ 𝑦 ∈ ran 𝐺 ) ) |
| 110 | 108 109 | anbi12d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ↔ ( 𝑥 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺 ) ) ) |
| 111 | 110 | biimpar | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺 ) ) → ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) |
| 112 | 111 8 | syldan | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺 ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ) |
| 113 | 112 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ran 𝐺 ∀ 𝑦 ∈ ran 𝐺 ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ) |
| 114 | rnexg | ⊢ ( 𝐺 ∈ AbelOp → ran 𝐺 ∈ V ) | |
| 115 | 1 114 | syl | ⊢ ( 𝜑 → ran 𝐺 ∈ V ) |
| 116 | 2 115 | eqeltrd | ⊢ ( 𝜑 → 𝑋 ∈ V ) |
| 117 | 116 116 | xpexd | ⊢ ( 𝜑 → ( 𝑋 × 𝑋 ) ∈ V ) |
| 118 | 3 117 | fexd | ⊢ ( 𝜑 → 𝐻 ∈ V ) |
| 119 | iscom2 | ⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝐻 ∈ V ) → ( 〈 𝐺 , 𝐻 〉 ∈ Com2 ↔ ∀ 𝑥 ∈ ran 𝐺 ∀ 𝑦 ∈ ran 𝐺 ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ) ) | |
| 120 | 1 118 119 | syl2anc | ⊢ ( 𝜑 → ( 〈 𝐺 , 𝐻 〉 ∈ Com2 ↔ ∀ 𝑥 ∈ ran 𝐺 ∀ 𝑦 ∈ ran 𝐺 ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑥 ) ) ) |
| 121 | 113 120 | mpbird | ⊢ ( 𝜑 → 〈 𝐺 , 𝐻 〉 ∈ Com2 ) |
| 122 | iscrngo | ⊢ ( 〈 𝐺 , 𝐻 〉 ∈ CRingOps ↔ ( 〈 𝐺 , 𝐻 〉 ∈ RingOps ∧ 〈 𝐺 , 𝐻 〉 ∈ Com2 ) ) | |
| 123 | 107 121 122 | sylanbrc | ⊢ ( 𝜑 → 〈 𝐺 , 𝐻 〉 ∈ CRingOps ) |