This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A device to add commutativity to various sorts of rings. (Contributed by FL, 6-Sep-2009) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iscom2 | ⊢ ( ( 𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐵 ) → ( 〈 𝐺 , 𝐻 〉 ∈ Com2 ↔ ∀ 𝑎 ∈ ran 𝐺 ∀ 𝑏 ∈ ran 𝐺 ( 𝑎 𝐻 𝑏 ) = ( 𝑏 𝐻 𝑎 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-com2 | ⊢ Com2 = { 〈 𝑥 , 𝑦 〉 ∣ ∀ 𝑎 ∈ ran 𝑥 ∀ 𝑏 ∈ ran 𝑥 ( 𝑎 𝑦 𝑏 ) = ( 𝑏 𝑦 𝑎 ) } | |
| 2 | 1 | a1i | ⊢ ( ( 𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐵 ) → Com2 = { 〈 𝑥 , 𝑦 〉 ∣ ∀ 𝑎 ∈ ran 𝑥 ∀ 𝑏 ∈ ran 𝑥 ( 𝑎 𝑦 𝑏 ) = ( 𝑏 𝑦 𝑎 ) } ) |
| 3 | 2 | eleq2d | ⊢ ( ( 𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐵 ) → ( 〈 𝐺 , 𝐻 〉 ∈ Com2 ↔ 〈 𝐺 , 𝐻 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ∀ 𝑎 ∈ ran 𝑥 ∀ 𝑏 ∈ ran 𝑥 ( 𝑎 𝑦 𝑏 ) = ( 𝑏 𝑦 𝑎 ) } ) ) |
| 4 | rneq | ⊢ ( 𝑥 = 𝐺 → ran 𝑥 = ran 𝐺 ) | |
| 5 | 4 | raleqdv | ⊢ ( 𝑥 = 𝐺 → ( ∀ 𝑏 ∈ ran 𝑥 ( 𝑎 𝑦 𝑏 ) = ( 𝑏 𝑦 𝑎 ) ↔ ∀ 𝑏 ∈ ran 𝐺 ( 𝑎 𝑦 𝑏 ) = ( 𝑏 𝑦 𝑎 ) ) ) |
| 6 | 4 5 | raleqbidv | ⊢ ( 𝑥 = 𝐺 → ( ∀ 𝑎 ∈ ran 𝑥 ∀ 𝑏 ∈ ran 𝑥 ( 𝑎 𝑦 𝑏 ) = ( 𝑏 𝑦 𝑎 ) ↔ ∀ 𝑎 ∈ ran 𝐺 ∀ 𝑏 ∈ ran 𝐺 ( 𝑎 𝑦 𝑏 ) = ( 𝑏 𝑦 𝑎 ) ) ) |
| 7 | oveq | ⊢ ( 𝑦 = 𝐻 → ( 𝑎 𝑦 𝑏 ) = ( 𝑎 𝐻 𝑏 ) ) | |
| 8 | oveq | ⊢ ( 𝑦 = 𝐻 → ( 𝑏 𝑦 𝑎 ) = ( 𝑏 𝐻 𝑎 ) ) | |
| 9 | 7 8 | eqeq12d | ⊢ ( 𝑦 = 𝐻 → ( ( 𝑎 𝑦 𝑏 ) = ( 𝑏 𝑦 𝑎 ) ↔ ( 𝑎 𝐻 𝑏 ) = ( 𝑏 𝐻 𝑎 ) ) ) |
| 10 | 9 | 2ralbidv | ⊢ ( 𝑦 = 𝐻 → ( ∀ 𝑎 ∈ ran 𝐺 ∀ 𝑏 ∈ ran 𝐺 ( 𝑎 𝑦 𝑏 ) = ( 𝑏 𝑦 𝑎 ) ↔ ∀ 𝑎 ∈ ran 𝐺 ∀ 𝑏 ∈ ran 𝐺 ( 𝑎 𝐻 𝑏 ) = ( 𝑏 𝐻 𝑎 ) ) ) |
| 11 | 6 10 | opelopabg | ⊢ ( ( 𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐵 ) → ( 〈 𝐺 , 𝐻 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ∀ 𝑎 ∈ ran 𝑥 ∀ 𝑏 ∈ ran 𝑥 ( 𝑎 𝑦 𝑏 ) = ( 𝑏 𝑦 𝑎 ) } ↔ ∀ 𝑎 ∈ ran 𝐺 ∀ 𝑏 ∈ ran 𝐺 ( 𝑎 𝐻 𝑏 ) = ( 𝑏 𝐻 𝑎 ) ) ) |
| 12 | 3 11 | bitrd | ⊢ ( ( 𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐵 ) → ( 〈 𝐺 , 𝐻 〉 ∈ Com2 ↔ ∀ 𝑎 ∈ ran 𝐺 ∀ 𝑏 ∈ ran 𝐺 ( 𝑎 𝐻 𝑏 ) = ( 𝑏 𝐻 𝑎 ) ) ) |