This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conditions that determine a commutative ring. (Contributed by Jeff Madsen, 20-Jun-2011) (Revised by Mario Carneiro, 23-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscringd.1 | |- ( ph -> G e. AbelOp ) |
|
| iscringd.2 | |- ( ph -> X = ran G ) |
||
| iscringd.3 | |- ( ph -> H : ( X X. X ) --> X ) |
||
| iscringd.4 | |- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( ( x H y ) H z ) = ( x H ( y H z ) ) ) |
||
| iscringd.5 | |- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( x H ( y G z ) ) = ( ( x H y ) G ( x H z ) ) ) |
||
| iscringd.6 | |- ( ph -> U e. X ) |
||
| iscringd.7 | |- ( ( ph /\ y e. X ) -> ( y H U ) = y ) |
||
| iscringd.8 | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x H y ) = ( y H x ) ) |
||
| Assertion | iscringd | |- ( ph -> <. G , H >. e. CRingOps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscringd.1 | |- ( ph -> G e. AbelOp ) |
|
| 2 | iscringd.2 | |- ( ph -> X = ran G ) |
|
| 3 | iscringd.3 | |- ( ph -> H : ( X X. X ) --> X ) |
|
| 4 | iscringd.4 | |- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( ( x H y ) H z ) = ( x H ( y H z ) ) ) |
|
| 5 | iscringd.5 | |- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( x H ( y G z ) ) = ( ( x H y ) G ( x H z ) ) ) |
|
| 6 | iscringd.6 | |- ( ph -> U e. X ) |
|
| 7 | iscringd.7 | |- ( ( ph /\ y e. X ) -> ( y H U ) = y ) |
|
| 8 | iscringd.8 | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x H y ) = ( y H x ) ) |
|
| 9 | id | |- ( ( z e. X /\ y e. X /\ x e. X ) -> ( z e. X /\ y e. X /\ x e. X ) ) |
|
| 10 | 9 | 3com13 | |- ( ( x e. X /\ y e. X /\ z e. X ) -> ( z e. X /\ y e. X /\ x e. X ) ) |
| 11 | eleq1 | |- ( w = z -> ( w e. X <-> z e. X ) ) |
|
| 12 | 11 | 3anbi1d | |- ( w = z -> ( ( w e. X /\ y e. X /\ x e. X ) <-> ( z e. X /\ y e. X /\ x e. X ) ) ) |
| 13 | 12 | anbi2d | |- ( w = z -> ( ( ph /\ ( w e. X /\ y e. X /\ x e. X ) ) <-> ( ph /\ ( z e. X /\ y e. X /\ x e. X ) ) ) ) |
| 14 | oveq2 | |- ( w = z -> ( ( x G y ) H w ) = ( ( x G y ) H z ) ) |
|
| 15 | oveq2 | |- ( w = z -> ( x H w ) = ( x H z ) ) |
|
| 16 | oveq2 | |- ( w = z -> ( y H w ) = ( y H z ) ) |
|
| 17 | 15 16 | oveq12d | |- ( w = z -> ( ( x H w ) G ( y H w ) ) = ( ( x H z ) G ( y H z ) ) ) |
| 18 | 14 17 | eqeq12d | |- ( w = z -> ( ( ( x G y ) H w ) = ( ( x H w ) G ( y H w ) ) <-> ( ( x G y ) H z ) = ( ( x H z ) G ( y H z ) ) ) ) |
| 19 | 13 18 | imbi12d | |- ( w = z -> ( ( ( ph /\ ( w e. X /\ y e. X /\ x e. X ) ) -> ( ( x G y ) H w ) = ( ( x H w ) G ( y H w ) ) ) <-> ( ( ph /\ ( z e. X /\ y e. X /\ x e. X ) ) -> ( ( x G y ) H z ) = ( ( x H z ) G ( y H z ) ) ) ) ) |
| 20 | eleq1 | |- ( z = x -> ( z e. X <-> x e. X ) ) |
|
| 21 | 20 | 3anbi3d | |- ( z = x -> ( ( w e. X /\ y e. X /\ z e. X ) <-> ( w e. X /\ y e. X /\ x e. X ) ) ) |
| 22 | 21 | anbi2d | |- ( z = x -> ( ( ph /\ ( w e. X /\ y e. X /\ z e. X ) ) <-> ( ph /\ ( w e. X /\ y e. X /\ x e. X ) ) ) ) |
| 23 | oveq1 | |- ( z = x -> ( z G y ) = ( x G y ) ) |
|
| 24 | 23 | oveq1d | |- ( z = x -> ( ( z G y ) H w ) = ( ( x G y ) H w ) ) |
| 25 | oveq1 | |- ( z = x -> ( z H w ) = ( x H w ) ) |
|
| 26 | 25 | oveq1d | |- ( z = x -> ( ( z H w ) G ( y H w ) ) = ( ( x H w ) G ( y H w ) ) ) |
| 27 | 24 26 | eqeq12d | |- ( z = x -> ( ( ( z G y ) H w ) = ( ( z H w ) G ( y H w ) ) <-> ( ( x G y ) H w ) = ( ( x H w ) G ( y H w ) ) ) ) |
| 28 | 22 27 | imbi12d | |- ( z = x -> ( ( ( ph /\ ( w e. X /\ y e. X /\ z e. X ) ) -> ( ( z G y ) H w ) = ( ( z H w ) G ( y H w ) ) ) <-> ( ( ph /\ ( w e. X /\ y e. X /\ x e. X ) ) -> ( ( x G y ) H w ) = ( ( x H w ) G ( y H w ) ) ) ) ) |
| 29 | eleq1 | |- ( x = w -> ( x e. X <-> w e. X ) ) |
|
| 30 | 29 | 3anbi1d | |- ( x = w -> ( ( x e. X /\ y e. X /\ z e. X ) <-> ( w e. X /\ y e. X /\ z e. X ) ) ) |
| 31 | 30 | anbi2d | |- ( x = w -> ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) <-> ( ph /\ ( w e. X /\ y e. X /\ z e. X ) ) ) ) |
| 32 | oveq2 | |- ( x = w -> ( ( z G y ) H x ) = ( ( z G y ) H w ) ) |
|
| 33 | oveq2 | |- ( x = w -> ( z H x ) = ( z H w ) ) |
|
| 34 | oveq2 | |- ( x = w -> ( y H x ) = ( y H w ) ) |
|
| 35 | 33 34 | oveq12d | |- ( x = w -> ( ( z H x ) G ( y H x ) ) = ( ( z H w ) G ( y H w ) ) ) |
| 36 | 32 35 | eqeq12d | |- ( x = w -> ( ( ( z G y ) H x ) = ( ( z H x ) G ( y H x ) ) <-> ( ( z G y ) H w ) = ( ( z H w ) G ( y H w ) ) ) ) |
| 37 | 31 36 | imbi12d | |- ( x = w -> ( ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( ( z G y ) H x ) = ( ( z H x ) G ( y H x ) ) ) <-> ( ( ph /\ ( w e. X /\ y e. X /\ z e. X ) ) -> ( ( z G y ) H w ) = ( ( z H w ) G ( y H w ) ) ) ) ) |
| 38 | 1 | adantr | |- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> G e. AbelOp ) |
| 39 | simpr3 | |- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> z e. X ) |
|
| 40 | 2 | adantr | |- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> X = ran G ) |
| 41 | 39 40 | eleqtrd | |- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> z e. ran G ) |
| 42 | simpr2 | |- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> y e. X ) |
|
| 43 | 42 40 | eleqtrd | |- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> y e. ran G ) |
| 44 | eqid | |- ran G = ran G |
|
| 45 | 44 | ablocom | |- ( ( G e. AbelOp /\ z e. ran G /\ y e. ran G ) -> ( z G y ) = ( y G z ) ) |
| 46 | 38 41 43 45 | syl3anc | |- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( z G y ) = ( y G z ) ) |
| 47 | 46 | oveq1d | |- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( ( z G y ) H x ) = ( ( y G z ) H x ) ) |
| 48 | simpr1 | |- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> x e. X ) |
|
| 49 | ablogrpo | |- ( G e. AbelOp -> G e. GrpOp ) |
|
| 50 | 38 49 | syl | |- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> G e. GrpOp ) |
| 51 | 44 | grpocl | |- ( ( G e. GrpOp /\ y e. ran G /\ z e. ran G ) -> ( y G z ) e. ran G ) |
| 52 | 50 43 41 51 | syl3anc | |- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( y G z ) e. ran G ) |
| 53 | 52 40 | eleqtrrd | |- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( y G z ) e. X ) |
| 54 | 48 53 | jca | |- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( x e. X /\ ( y G z ) e. X ) ) |
| 55 | ovex | |- ( y G z ) e. _V |
|
| 56 | eleq1 | |- ( w = ( y G z ) -> ( w e. X <-> ( y G z ) e. X ) ) |
|
| 57 | 56 | anbi2d | |- ( w = ( y G z ) -> ( ( x e. X /\ w e. X ) <-> ( x e. X /\ ( y G z ) e. X ) ) ) |
| 58 | 57 | anbi2d | |- ( w = ( y G z ) -> ( ( ph /\ ( x e. X /\ w e. X ) ) <-> ( ph /\ ( x e. X /\ ( y G z ) e. X ) ) ) ) |
| 59 | oveq2 | |- ( w = ( y G z ) -> ( x H w ) = ( x H ( y G z ) ) ) |
|
| 60 | oveq1 | |- ( w = ( y G z ) -> ( w H x ) = ( ( y G z ) H x ) ) |
|
| 61 | 59 60 | eqeq12d | |- ( w = ( y G z ) -> ( ( x H w ) = ( w H x ) <-> ( x H ( y G z ) ) = ( ( y G z ) H x ) ) ) |
| 62 | 58 61 | imbi12d | |- ( w = ( y G z ) -> ( ( ( ph /\ ( x e. X /\ w e. X ) ) -> ( x H w ) = ( w H x ) ) <-> ( ( ph /\ ( x e. X /\ ( y G z ) e. X ) ) -> ( x H ( y G z ) ) = ( ( y G z ) H x ) ) ) ) |
| 63 | eleq1 | |- ( y = w -> ( y e. X <-> w e. X ) ) |
|
| 64 | 63 | anbi2d | |- ( y = w -> ( ( x e. X /\ y e. X ) <-> ( x e. X /\ w e. X ) ) ) |
| 65 | 64 | anbi2d | |- ( y = w -> ( ( ph /\ ( x e. X /\ y e. X ) ) <-> ( ph /\ ( x e. X /\ w e. X ) ) ) ) |
| 66 | oveq2 | |- ( y = w -> ( x H y ) = ( x H w ) ) |
|
| 67 | oveq1 | |- ( y = w -> ( y H x ) = ( w H x ) ) |
|
| 68 | 66 67 | eqeq12d | |- ( y = w -> ( ( x H y ) = ( y H x ) <-> ( x H w ) = ( w H x ) ) ) |
| 69 | 65 68 | imbi12d | |- ( y = w -> ( ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x H y ) = ( y H x ) ) <-> ( ( ph /\ ( x e. X /\ w e. X ) ) -> ( x H w ) = ( w H x ) ) ) ) |
| 70 | 69 8 | chvarvv | |- ( ( ph /\ ( x e. X /\ w e. X ) ) -> ( x H w ) = ( w H x ) ) |
| 71 | 55 62 70 | vtocl | |- ( ( ph /\ ( x e. X /\ ( y G z ) e. X ) ) -> ( x H ( y G z ) ) = ( ( y G z ) H x ) ) |
| 72 | 54 71 | syldan | |- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( x H ( y G z ) ) = ( ( y G z ) H x ) ) |
| 73 | 8 | 3adantr3 | |- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( x H y ) = ( y H x ) ) |
| 74 | eleq1 | |- ( y = z -> ( y e. X <-> z e. X ) ) |
|
| 75 | 74 | anbi2d | |- ( y = z -> ( ( x e. X /\ y e. X ) <-> ( x e. X /\ z e. X ) ) ) |
| 76 | 75 | anbi2d | |- ( y = z -> ( ( ph /\ ( x e. X /\ y e. X ) ) <-> ( ph /\ ( x e. X /\ z e. X ) ) ) ) |
| 77 | oveq2 | |- ( y = z -> ( x H y ) = ( x H z ) ) |
|
| 78 | oveq1 | |- ( y = z -> ( y H x ) = ( z H x ) ) |
|
| 79 | 77 78 | eqeq12d | |- ( y = z -> ( ( x H y ) = ( y H x ) <-> ( x H z ) = ( z H x ) ) ) |
| 80 | 76 79 | imbi12d | |- ( y = z -> ( ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x H y ) = ( y H x ) ) <-> ( ( ph /\ ( x e. X /\ z e. X ) ) -> ( x H z ) = ( z H x ) ) ) ) |
| 81 | 80 8 | chvarvv | |- ( ( ph /\ ( x e. X /\ z e. X ) ) -> ( x H z ) = ( z H x ) ) |
| 82 | 81 | 3adantr2 | |- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( x H z ) = ( z H x ) ) |
| 83 | 73 82 | oveq12d | |- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( ( x H y ) G ( x H z ) ) = ( ( y H x ) G ( z H x ) ) ) |
| 84 | 3 | adantr | |- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> H : ( X X. X ) --> X ) |
| 85 | 84 42 48 | fovcdmd | |- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( y H x ) e. X ) |
| 86 | 85 40 | eleqtrd | |- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( y H x ) e. ran G ) |
| 87 | 84 39 48 | fovcdmd | |- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( z H x ) e. X ) |
| 88 | 87 40 | eleqtrd | |- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( z H x ) e. ran G ) |
| 89 | 44 | ablocom | |- ( ( G e. AbelOp /\ ( y H x ) e. ran G /\ ( z H x ) e. ran G ) -> ( ( y H x ) G ( z H x ) ) = ( ( z H x ) G ( y H x ) ) ) |
| 90 | 38 86 88 89 | syl3anc | |- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( ( y H x ) G ( z H x ) ) = ( ( z H x ) G ( y H x ) ) ) |
| 91 | 5 83 90 | 3eqtrd | |- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( x H ( y G z ) ) = ( ( z H x ) G ( y H x ) ) ) |
| 92 | 47 72 91 | 3eqtr2d | |- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( ( z G y ) H x ) = ( ( z H x ) G ( y H x ) ) ) |
| 93 | 37 92 | chvarvv | |- ( ( ph /\ ( w e. X /\ y e. X /\ z e. X ) ) -> ( ( z G y ) H w ) = ( ( z H w ) G ( y H w ) ) ) |
| 94 | 28 93 | chvarvv | |- ( ( ph /\ ( w e. X /\ y e. X /\ x e. X ) ) -> ( ( x G y ) H w ) = ( ( x H w ) G ( y H w ) ) ) |
| 95 | 19 94 | chvarvv | |- ( ( ph /\ ( z e. X /\ y e. X /\ x e. X ) ) -> ( ( x G y ) H z ) = ( ( x H z ) G ( y H z ) ) ) |
| 96 | 10 95 | sylan2 | |- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( ( x G y ) H z ) = ( ( x H z ) G ( y H z ) ) ) |
| 97 | 6 | adantr | |- ( ( ph /\ y e. X ) -> U e. X ) |
| 98 | oveq1 | |- ( x = U -> ( x H y ) = ( U H y ) ) |
|
| 99 | oveq2 | |- ( x = U -> ( y H x ) = ( y H U ) ) |
|
| 100 | 98 99 | eqeq12d | |- ( x = U -> ( ( x H y ) = ( y H x ) <-> ( U H y ) = ( y H U ) ) ) |
| 101 | 100 | imbi2d | |- ( x = U -> ( ( ( ph /\ y e. X ) -> ( x H y ) = ( y H x ) ) <-> ( ( ph /\ y e. X ) -> ( U H y ) = ( y H U ) ) ) ) |
| 102 | 8 | an12s | |- ( ( x e. X /\ ( ph /\ y e. X ) ) -> ( x H y ) = ( y H x ) ) |
| 103 | 102 | ex | |- ( x e. X -> ( ( ph /\ y e. X ) -> ( x H y ) = ( y H x ) ) ) |
| 104 | 101 103 | vtoclga | |- ( U e. X -> ( ( ph /\ y e. X ) -> ( U H y ) = ( y H U ) ) ) |
| 105 | 97 104 | mpcom | |- ( ( ph /\ y e. X ) -> ( U H y ) = ( y H U ) ) |
| 106 | 105 7 | eqtrd | |- ( ( ph /\ y e. X ) -> ( U H y ) = y ) |
| 107 | 1 2 3 4 5 96 6 106 7 | isrngod | |- ( ph -> <. G , H >. e. RingOps ) |
| 108 | 2 | eleq2d | |- ( ph -> ( x e. X <-> x e. ran G ) ) |
| 109 | 2 | eleq2d | |- ( ph -> ( y e. X <-> y e. ran G ) ) |
| 110 | 108 109 | anbi12d | |- ( ph -> ( ( x e. X /\ y e. X ) <-> ( x e. ran G /\ y e. ran G ) ) ) |
| 111 | 110 | biimpar | |- ( ( ph /\ ( x e. ran G /\ y e. ran G ) ) -> ( x e. X /\ y e. X ) ) |
| 112 | 111 8 | syldan | |- ( ( ph /\ ( x e. ran G /\ y e. ran G ) ) -> ( x H y ) = ( y H x ) ) |
| 113 | 112 | ralrimivva | |- ( ph -> A. x e. ran G A. y e. ran G ( x H y ) = ( y H x ) ) |
| 114 | rnexg | |- ( G e. AbelOp -> ran G e. _V ) |
|
| 115 | 1 114 | syl | |- ( ph -> ran G e. _V ) |
| 116 | 2 115 | eqeltrd | |- ( ph -> X e. _V ) |
| 117 | 116 116 | xpexd | |- ( ph -> ( X X. X ) e. _V ) |
| 118 | 3 117 | fexd | |- ( ph -> H e. _V ) |
| 119 | iscom2 | |- ( ( G e. AbelOp /\ H e. _V ) -> ( <. G , H >. e. Com2 <-> A. x e. ran G A. y e. ran G ( x H y ) = ( y H x ) ) ) |
|
| 120 | 1 118 119 | syl2anc | |- ( ph -> ( <. G , H >. e. Com2 <-> A. x e. ran G A. y e. ran G ( x H y ) = ( y H x ) ) ) |
| 121 | 113 120 | mpbird | |- ( ph -> <. G , H >. e. Com2 ) |
| 122 | iscrngo | |- ( <. G , H >. e. CRingOps <-> ( <. G , H >. e. RingOps /\ <. G , H >. e. Com2 ) ) |
|
| 123 | 107 121 122 | sylanbrc | |- ( ph -> <. G , H >. e. CRingOps ) |