This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A field is a division ring. (Contributed by Jeff Madsen, 10-Jun-2010) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flddivrng | ⊢ ( 𝐾 ∈ Fld → 𝐾 ∈ DivRingOps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fld | ⊢ Fld = ( DivRingOps ∩ Com2 ) | |
| 2 | inss1 | ⊢ ( DivRingOps ∩ Com2 ) ⊆ DivRingOps | |
| 3 | 1 2 | eqsstri | ⊢ Fld ⊆ DivRingOps |
| 4 | 3 | sseli | ⊢ ( 𝐾 ∈ Fld → 𝐾 ∈ DivRingOps ) |