This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set A is clopen iff for every point x in the space there is a neighborhood y such that all the points in y are in A iff x is. (Contributed by Mario Carneiro, 10-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isclo.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | isclo | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 ∈ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isclo.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | elin | ⊢ ( 𝐴 ∈ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ↔ ( 𝐴 ∈ 𝐽 ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ) | |
| 3 | 1 | iscld2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝑋 ∖ 𝐴 ) ∈ 𝐽 ) ) |
| 4 | 3 | anbi2d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( ( 𝐴 ∈ 𝐽 ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ↔ ( 𝐴 ∈ 𝐽 ∧ ( 𝑋 ∖ 𝐴 ) ∈ 𝐽 ) ) ) |
| 5 | eltop2 | ⊢ ( 𝐽 ∈ Top → ( 𝐴 ∈ 𝐽 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) ) ) | |
| 6 | dfss3 | ⊢ ( 𝑦 ⊆ 𝐴 ↔ ∀ 𝑧 ∈ 𝑦 𝑧 ∈ 𝐴 ) | |
| 7 | pm5.501 | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝑧 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ) | |
| 8 | 7 | ralbidv | ⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑧 ∈ 𝑦 𝑧 ∈ 𝐴 ↔ ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ) |
| 9 | 6 8 | bitrid | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝑦 ⊆ 𝐴 ↔ ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ) |
| 10 | 9 | anbi2d | ⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) ↔ ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ) ) |
| 11 | 10 | rexbidv | ⊢ ( 𝑥 ∈ 𝐴 → ( ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) ↔ ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ) ) |
| 12 | 11 | ralbiia | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ) |
| 13 | 5 12 | bitrdi | ⊢ ( 𝐽 ∈ Top → ( 𝐴 ∈ 𝐽 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ) ) |
| 14 | eltop2 | ⊢ ( 𝐽 ∈ Top → ( ( 𝑋 ∖ 𝐴 ) ∈ 𝐽 ↔ ∀ 𝑥 ∈ ( 𝑋 ∖ 𝐴 ) ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝑋 ∖ 𝐴 ) ) ) ) | |
| 15 | dfss3 | ⊢ ( 𝑦 ⊆ ( 𝑋 ∖ 𝐴 ) ↔ ∀ 𝑧 ∈ 𝑦 𝑧 ∈ ( 𝑋 ∖ 𝐴 ) ) | |
| 16 | id | ⊢ ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑦 ) | |
| 17 | simpr | ⊢ ( ( 𝑥 ∈ ( 𝑋 ∖ 𝐴 ) ∧ 𝑦 ∈ 𝐽 ) → 𝑦 ∈ 𝐽 ) | |
| 18 | elunii | ⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐽 ) → 𝑧 ∈ ∪ 𝐽 ) | |
| 19 | 16 17 18 | syl2anr | ⊢ ( ( ( 𝑥 ∈ ( 𝑋 ∖ 𝐴 ) ∧ 𝑦 ∈ 𝐽 ) ∧ 𝑧 ∈ 𝑦 ) → 𝑧 ∈ ∪ 𝐽 ) |
| 20 | 19 1 | eleqtrrdi | ⊢ ( ( ( 𝑥 ∈ ( 𝑋 ∖ 𝐴 ) ∧ 𝑦 ∈ 𝐽 ) ∧ 𝑧 ∈ 𝑦 ) → 𝑧 ∈ 𝑋 ) |
| 21 | eldif | ⊢ ( 𝑧 ∈ ( 𝑋 ∖ 𝐴 ) ↔ ( 𝑧 ∈ 𝑋 ∧ ¬ 𝑧 ∈ 𝐴 ) ) | |
| 22 | 21 | baib | ⊢ ( 𝑧 ∈ 𝑋 → ( 𝑧 ∈ ( 𝑋 ∖ 𝐴 ) ↔ ¬ 𝑧 ∈ 𝐴 ) ) |
| 23 | 20 22 | syl | ⊢ ( ( ( 𝑥 ∈ ( 𝑋 ∖ 𝐴 ) ∧ 𝑦 ∈ 𝐽 ) ∧ 𝑧 ∈ 𝑦 ) → ( 𝑧 ∈ ( 𝑋 ∖ 𝐴 ) ↔ ¬ 𝑧 ∈ 𝐴 ) ) |
| 24 | eldifn | ⊢ ( 𝑥 ∈ ( 𝑋 ∖ 𝐴 ) → ¬ 𝑥 ∈ 𝐴 ) | |
| 25 | nbn2 | ⊢ ( ¬ 𝑥 ∈ 𝐴 → ( ¬ 𝑧 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ) | |
| 26 | 24 25 | syl | ⊢ ( 𝑥 ∈ ( 𝑋 ∖ 𝐴 ) → ( ¬ 𝑧 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ) |
| 27 | 26 | ad2antrr | ⊢ ( ( ( 𝑥 ∈ ( 𝑋 ∖ 𝐴 ) ∧ 𝑦 ∈ 𝐽 ) ∧ 𝑧 ∈ 𝑦 ) → ( ¬ 𝑧 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ) |
| 28 | 23 27 | bitrd | ⊢ ( ( ( 𝑥 ∈ ( 𝑋 ∖ 𝐴 ) ∧ 𝑦 ∈ 𝐽 ) ∧ 𝑧 ∈ 𝑦 ) → ( 𝑧 ∈ ( 𝑋 ∖ 𝐴 ) ↔ ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ) |
| 29 | 28 | ralbidva | ⊢ ( ( 𝑥 ∈ ( 𝑋 ∖ 𝐴 ) ∧ 𝑦 ∈ 𝐽 ) → ( ∀ 𝑧 ∈ 𝑦 𝑧 ∈ ( 𝑋 ∖ 𝐴 ) ↔ ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ) |
| 30 | 15 29 | bitrid | ⊢ ( ( 𝑥 ∈ ( 𝑋 ∖ 𝐴 ) ∧ 𝑦 ∈ 𝐽 ) → ( 𝑦 ⊆ ( 𝑋 ∖ 𝐴 ) ↔ ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ) |
| 31 | 30 | anbi2d | ⊢ ( ( 𝑥 ∈ ( 𝑋 ∖ 𝐴 ) ∧ 𝑦 ∈ 𝐽 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝑋 ∖ 𝐴 ) ) ↔ ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ) ) |
| 32 | 31 | rexbidva | ⊢ ( 𝑥 ∈ ( 𝑋 ∖ 𝐴 ) → ( ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝑋 ∖ 𝐴 ) ) ↔ ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ) ) |
| 33 | 32 | ralbiia | ⊢ ( ∀ 𝑥 ∈ ( 𝑋 ∖ 𝐴 ) ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝑋 ∖ 𝐴 ) ) ↔ ∀ 𝑥 ∈ ( 𝑋 ∖ 𝐴 ) ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ) |
| 34 | 14 33 | bitrdi | ⊢ ( 𝐽 ∈ Top → ( ( 𝑋 ∖ 𝐴 ) ∈ 𝐽 ↔ ∀ 𝑥 ∈ ( 𝑋 ∖ 𝐴 ) ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ) ) |
| 35 | 13 34 | anbi12d | ⊢ ( 𝐽 ∈ Top → ( ( 𝐴 ∈ 𝐽 ∧ ( 𝑋 ∖ 𝐴 ) ∈ 𝐽 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 ∖ 𝐴 ) ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ) ) ) |
| 36 | 35 | adantr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( ( 𝐴 ∈ 𝐽 ∧ ( 𝑋 ∖ 𝐴 ) ∈ 𝐽 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 ∖ 𝐴 ) ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ) ) ) |
| 37 | ralunb | ⊢ ( ∀ 𝑥 ∈ ( 𝐴 ∪ ( 𝑋 ∖ 𝐴 ) ) ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 ∖ 𝐴 ) ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ) ) | |
| 38 | simpr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ⊆ 𝑋 ) | |
| 39 | undif | ⊢ ( 𝐴 ⊆ 𝑋 ↔ ( 𝐴 ∪ ( 𝑋 ∖ 𝐴 ) ) = 𝑋 ) | |
| 40 | 38 39 | sylib | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 ∪ ( 𝑋 ∖ 𝐴 ) ) = 𝑋 ) |
| 41 | 40 | raleqdv | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( ∀ 𝑥 ∈ ( 𝐴 ∪ ( 𝑋 ∖ 𝐴 ) ) ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ) ) |
| 42 | 37 41 | bitr3id | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 ∖ 𝐴 ) ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ) ) |
| 43 | 4 36 42 | 3bitrd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( ( 𝐴 ∈ 𝐽 ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ) ) |
| 44 | 2 43 | bitrid | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 ∈ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ) ) |