This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The negation of a wff is equivalent to the wff's equivalence to falsehood. (Contributed by Juha Arpiainen, 19-Jan-2006) (Proof shortened by Wolf Lammen, 28-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nbn2 | ⊢ ( ¬ 𝜑 → ( ¬ 𝜓 ↔ ( 𝜑 ↔ 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.501 | ⊢ ( ¬ 𝜑 → ( ¬ 𝜓 ↔ ( ¬ 𝜑 ↔ ¬ 𝜓 ) ) ) | |
| 2 | notbi | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ¬ 𝜑 ↔ ¬ 𝜓 ) ) | |
| 3 | 1 2 | bitr4di | ⊢ ( ¬ 𝜑 → ( ¬ 𝜓 ↔ ( 𝜑 ↔ 𝜓 ) ) ) |