This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set A is clopen iff for every point x in the space there is a neighborhood y of x which is either disjoint from A or contained in A . (Contributed by Mario Carneiro, 7-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isclo.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | isclo2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 ∈ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑧 ∈ 𝐴 → 𝑦 ⊆ 𝐴 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isclo.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | isclo | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 ∈ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ) ) |
| 3 | eleq1w | ⊢ ( 𝑧 = 𝑤 → ( 𝑧 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) | |
| 4 | 3 | bibi2d | ⊢ ( 𝑧 = 𝑤 → ( ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ↔ ( 𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) ) |
| 5 | 4 | cbvralvw | ⊢ ( ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ↔ ∀ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) |
| 6 | 5 | anbi2i | ⊢ ( ( ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ↔ ( ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ∧ ∀ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) ) |
| 7 | pm4.24 | ⊢ ( ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ↔ ( ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ) | |
| 8 | raaanv | ⊢ ( ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) ↔ ( ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ∧ ∀ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) ) | |
| 9 | 6 7 8 | 3bitr4i | ⊢ ( ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ↔ ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) ) |
| 10 | bibi1 | ⊢ ( ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ↔ ( 𝑧 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) ) | |
| 11 | 10 | biimpa | ⊢ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) → ( 𝑧 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) |
| 12 | 11 | biimpcd | ⊢ ( 𝑧 ∈ 𝐴 → ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) → 𝑤 ∈ 𝐴 ) ) |
| 13 | 12 | ralimdv | ⊢ ( 𝑧 ∈ 𝐴 → ( ∀ 𝑤 ∈ 𝑦 ( ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) → ∀ 𝑤 ∈ 𝑦 𝑤 ∈ 𝐴 ) ) |
| 14 | 13 | com12 | ⊢ ( ∀ 𝑤 ∈ 𝑦 ( ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) → ( 𝑧 ∈ 𝐴 → ∀ 𝑤 ∈ 𝑦 𝑤 ∈ 𝐴 ) ) |
| 15 | dfss3 | ⊢ ( 𝑦 ⊆ 𝐴 ↔ ∀ 𝑤 ∈ 𝑦 𝑤 ∈ 𝐴 ) | |
| 16 | 14 15 | imbitrrdi | ⊢ ( ∀ 𝑤 ∈ 𝑦 ( ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) → ( 𝑧 ∈ 𝐴 → 𝑦 ⊆ 𝐴 ) ) |
| 17 | 16 | ralimi | ⊢ ( ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) → ∀ 𝑧 ∈ 𝑦 ( 𝑧 ∈ 𝐴 → 𝑦 ⊆ 𝐴 ) ) |
| 18 | 9 17 | sylbi | ⊢ ( ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) → ∀ 𝑧 ∈ 𝑦 ( 𝑧 ∈ 𝐴 → 𝑦 ⊆ 𝐴 ) ) |
| 19 | eleq1w | ⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴 ) ) | |
| 20 | 19 | imbi1d | ⊢ ( 𝑧 = 𝑥 → ( ( 𝑧 ∈ 𝐴 → 𝑦 ⊆ 𝐴 ) ↔ ( 𝑥 ∈ 𝐴 → 𝑦 ⊆ 𝐴 ) ) ) |
| 21 | 20 | rspcv | ⊢ ( 𝑥 ∈ 𝑦 → ( ∀ 𝑧 ∈ 𝑦 ( 𝑧 ∈ 𝐴 → 𝑦 ⊆ 𝐴 ) → ( 𝑥 ∈ 𝐴 → 𝑦 ⊆ 𝐴 ) ) ) |
| 22 | dfss3 | ⊢ ( 𝑦 ⊆ 𝐴 ↔ ∀ 𝑧 ∈ 𝑦 𝑧 ∈ 𝐴 ) | |
| 23 | 22 | imbi2i | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝑦 ⊆ 𝐴 ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑧 ∈ 𝑦 𝑧 ∈ 𝐴 ) ) |
| 24 | r19.21v | ⊢ ( ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 → 𝑧 ∈ 𝐴 ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑧 ∈ 𝑦 𝑧 ∈ 𝐴 ) ) | |
| 25 | 23 24 | bitr4i | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝑦 ⊆ 𝐴 ) ↔ ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 → 𝑧 ∈ 𝐴 ) ) |
| 26 | 21 25 | imbitrdi | ⊢ ( 𝑥 ∈ 𝑦 → ( ∀ 𝑧 ∈ 𝑦 ( 𝑧 ∈ 𝐴 → 𝑦 ⊆ 𝐴 ) → ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 → 𝑧 ∈ 𝐴 ) ) ) |
| 27 | ssel | ⊢ ( 𝑦 ⊆ 𝐴 → ( 𝑥 ∈ 𝑦 → 𝑥 ∈ 𝐴 ) ) | |
| 28 | 27 | com12 | ⊢ ( 𝑥 ∈ 𝑦 → ( 𝑦 ⊆ 𝐴 → 𝑥 ∈ 𝐴 ) ) |
| 29 | 28 | imim2d | ⊢ ( 𝑥 ∈ 𝑦 → ( ( 𝑧 ∈ 𝐴 → 𝑦 ⊆ 𝐴 ) → ( 𝑧 ∈ 𝐴 → 𝑥 ∈ 𝐴 ) ) ) |
| 30 | 29 | ralimdv | ⊢ ( 𝑥 ∈ 𝑦 → ( ∀ 𝑧 ∈ 𝑦 ( 𝑧 ∈ 𝐴 → 𝑦 ⊆ 𝐴 ) → ∀ 𝑧 ∈ 𝑦 ( 𝑧 ∈ 𝐴 → 𝑥 ∈ 𝐴 ) ) ) |
| 31 | 26 30 | jcad | ⊢ ( 𝑥 ∈ 𝑦 → ( ∀ 𝑧 ∈ 𝑦 ( 𝑧 ∈ 𝐴 → 𝑦 ⊆ 𝐴 ) → ( ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 → 𝑧 ∈ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑧 ∈ 𝐴 → 𝑥 ∈ 𝐴 ) ) ) ) |
| 32 | ralbiim | ⊢ ( ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ↔ ( ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 → 𝑧 ∈ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑧 ∈ 𝐴 → 𝑥 ∈ 𝐴 ) ) ) | |
| 33 | 31 32 | imbitrrdi | ⊢ ( 𝑥 ∈ 𝑦 → ( ∀ 𝑧 ∈ 𝑦 ( 𝑧 ∈ 𝐴 → 𝑦 ⊆ 𝐴 ) → ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ) |
| 34 | 18 33 | impbid2 | ⊢ ( 𝑥 ∈ 𝑦 → ( ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ↔ ∀ 𝑧 ∈ 𝑦 ( 𝑧 ∈ 𝐴 → 𝑦 ⊆ 𝐴 ) ) ) |
| 35 | 34 | pm5.32i | ⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ↔ ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑧 ∈ 𝐴 → 𝑦 ⊆ 𝐴 ) ) ) |
| 36 | 35 | rexbii | ⊢ ( ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ↔ ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑧 ∈ 𝐴 → 𝑦 ⊆ 𝐴 ) ) ) |
| 37 | 36 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑧 ∈ 𝐴 → 𝑦 ⊆ 𝐴 ) ) ) |
| 38 | 2 37 | bitrdi | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 ∈ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝑧 ∈ 𝐴 → 𝑦 ⊆ 𝐴 ) ) ) ) |