This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduce the identity arrow in a category. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catidd.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) | |
| catidd.h | ⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝐶 ) ) | ||
| catidd.o | ⊢ ( 𝜑 → · = ( comp ‘ 𝐶 ) ) | ||
| catidd.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| catidd.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 1 ∈ ( 𝑥 𝐻 𝑥 ) ) | ||
| catidd.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ) ) → ( 1 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ) | ||
| catidd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) ) → ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 1 ) = 𝑓 ) | ||
| Assertion | catidd | ⊢ ( 𝜑 → ( Id ‘ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catidd.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) | |
| 2 | catidd.h | ⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝐶 ) ) | |
| 3 | catidd.o | ⊢ ( 𝜑 → · = ( comp ‘ 𝐶 ) ) | |
| 4 | catidd.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 5 | catidd.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 1 ∈ ( 𝑥 𝐻 𝑥 ) ) | |
| 6 | catidd.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ) ) → ( 1 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ) | |
| 7 | catidd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) ) → ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 1 ) = 𝑓 ) | |
| 8 | 6 | ex | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ) → ( 1 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ) ) |
| 9 | 1 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) |
| 10 | 1 | eleq2d | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) |
| 11 | 2 | oveqd | ⊢ ( 𝜑 → ( 𝑦 𝐻 𝑥 ) = ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 12 | 11 | eleq2d | ⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ↔ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) ) |
| 13 | 9 10 12 | 3anbi123d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) ) ) |
| 14 | 3 | oveqd | ⊢ ( 𝜑 → ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) = ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) ) |
| 15 | 14 | oveqd | ⊢ ( 𝜑 → ( 1 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = ( 1 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) ) |
| 16 | 15 | eqeq1d | ⊢ ( 𝜑 → ( ( 1 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ↔ ( 1 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ) ) |
| 17 | 8 13 16 | 3imtr3d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( 1 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ) ) |
| 18 | 17 | 3expd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐶 ) → ( 𝑦 ∈ ( Base ‘ 𝐶 ) → ( 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) → ( 1 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ) ) ) ) |
| 19 | 18 | imp41 | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( 1 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ) |
| 20 | 19 | ralrimiva | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 1 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ) |
| 21 | 7 | ex | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) → ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 1 ) = 𝑓 ) ) |
| 22 | 2 | oveqd | ⊢ ( 𝜑 → ( 𝑥 𝐻 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 23 | 22 | eleq2d | ⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) |
| 24 | 9 10 23 | 3anbi123d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) ) |
| 25 | 3 | oveqd | ⊢ ( 𝜑 → ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) = ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) ) |
| 26 | 25 | oveqd | ⊢ ( 𝜑 → ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 1 ) = ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 1 ) ) |
| 27 | 26 | eqeq1d | ⊢ ( 𝜑 → ( ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 1 ) = 𝑓 ↔ ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 1 ) = 𝑓 ) ) |
| 28 | 21 24 27 | 3imtr3d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 1 ) = 𝑓 ) ) |
| 29 | 28 | 3expd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐶 ) → ( 𝑦 ∈ ( Base ‘ 𝐶 ) → ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) → ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 1 ) = 𝑓 ) ) ) ) |
| 30 | 29 | imp41 | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 1 ) = 𝑓 ) |
| 31 | 30 | ralrimiva | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 1 ) = 𝑓 ) |
| 32 | 20 31 | jca | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 1 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 1 ) = 𝑓 ) ) |
| 33 | 32 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 1 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 1 ) = 𝑓 ) ) |
| 34 | 5 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 → 1 ∈ ( 𝑥 𝐻 𝑥 ) ) ) |
| 35 | 2 | oveqd | ⊢ ( 𝜑 → ( 𝑥 𝐻 𝑥 ) = ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 36 | 35 | eleq2d | ⊢ ( 𝜑 → ( 1 ∈ ( 𝑥 𝐻 𝑥 ) ↔ 1 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ) |
| 37 | 34 9 36 | 3imtr3d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐶 ) → 1 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ) |
| 38 | 37 | imp | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 1 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 39 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 40 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 41 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 42 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐶 ∈ Cat ) |
| 43 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) | |
| 44 | 39 40 41 42 43 | catideu | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ∃! 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) |
| 45 | oveq1 | ⊢ ( 𝑔 = 1 → ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = ( 1 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) ) | |
| 46 | 45 | eqeq1d | ⊢ ( 𝑔 = 1 → ( ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ↔ ( 1 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ) ) |
| 47 | 46 | ralbidv | ⊢ ( 𝑔 = 1 → ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ↔ ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 1 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ) ) |
| 48 | oveq2 | ⊢ ( 𝑔 = 1 → ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 1 ) ) | |
| 49 | 48 | eqeq1d | ⊢ ( 𝑔 = 1 → ( ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ↔ ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 1 ) = 𝑓 ) ) |
| 50 | 49 | ralbidv | ⊢ ( 𝑔 = 1 → ( ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ↔ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 1 ) = 𝑓 ) ) |
| 51 | 47 50 | anbi12d | ⊢ ( 𝑔 = 1 → ( ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ↔ ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 1 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 1 ) = 𝑓 ) ) ) |
| 52 | 51 | ralbidv | ⊢ ( 𝑔 = 1 → ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 1 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 1 ) = 𝑓 ) ) ) |
| 53 | 52 | riota2 | ⊢ ( ( 1 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ ∃! 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 1 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 1 ) = 𝑓 ) ↔ ( ℩ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) = 1 ) ) |
| 54 | 38 44 53 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 1 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 1 ) = 𝑓 ) ↔ ( ℩ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) = 1 ) ) |
| 55 | 33 54 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ℩ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) = 1 ) |
| 56 | 55 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ℩ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ 1 ) ) |
| 57 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 58 | 39 40 41 4 57 | cidfval | ⊢ ( 𝜑 → ( Id ‘ 𝐶 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ℩ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) ) ) |
| 59 | 1 | mpteq1d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 1 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ 1 ) ) |
| 60 | 56 58 59 | 3eqtr4d | ⊢ ( 𝜑 → ( Id ‘ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ 1 ) ) |