This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closure system is algebraic iff the closure of a generating set is the union of the closures of its finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | acsdrscl.f | ⊢ 𝐹 = ( mrCls ‘ 𝐶 ) | |
| Assertion | isacs5 | ⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ↔ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acsdrscl.f | ⊢ 𝐹 = ( mrCls ‘ 𝐶 ) | |
| 2 | isacs3lem | ⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ∪ 𝑠 ∈ 𝐶 ) ) ) | |
| 3 | 1 | isacs4lem | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ∪ 𝑠 ∈ 𝐶 ) ) → ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑡 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) ) ) |
| 4 | 1 | isacs5lem | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑡 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) ) → ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) ) |
| 5 | 2 3 4 | 3syl | ⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) ) |
| 6 | simpl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) | |
| 7 | elpwi | ⊢ ( 𝑠 ∈ 𝒫 𝑋 → 𝑠 ⊆ 𝑋 ) | |
| 8 | 1 | mrcidb2 | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑠 ⊆ 𝑋 ) → ( 𝑠 ∈ 𝐶 ↔ ( 𝐹 ‘ 𝑠 ) ⊆ 𝑠 ) ) |
| 9 | 7 8 | sylan2 | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑠 ∈ 𝒫 𝑋 ) → ( 𝑠 ∈ 𝐶 ↔ ( 𝐹 ‘ 𝑠 ) ⊆ 𝑠 ) ) |
| 10 | 9 | adantr | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) → ( 𝑠 ∈ 𝐶 ↔ ( 𝐹 ‘ 𝑠 ) ⊆ 𝑠 ) ) |
| 11 | simpr | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) → ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) | |
| 12 | 1 | mrcf | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐹 : 𝒫 𝑋 ⟶ 𝐶 ) |
| 13 | ffun | ⊢ ( 𝐹 : 𝒫 𝑋 ⟶ 𝐶 → Fun 𝐹 ) | |
| 14 | funiunfv | ⊢ ( Fun 𝐹 → ∪ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑡 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) | |
| 15 | 12 13 14 | 3syl | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ∪ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑡 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) |
| 16 | 15 | ad2antrr | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) → ∪ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑡 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) |
| 17 | 11 16 | eqtr4d | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) → ( 𝐹 ‘ 𝑠 ) = ∪ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑡 ) ) |
| 18 | 17 | sseq1d | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) → ( ( 𝐹 ‘ 𝑠 ) ⊆ 𝑠 ↔ ∪ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑡 ) ⊆ 𝑠 ) ) |
| 19 | iunss | ⊢ ( ∪ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑡 ) ⊆ 𝑠 ↔ ∀ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑡 ) ⊆ 𝑠 ) | |
| 20 | 18 19 | bitrdi | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) → ( ( 𝐹 ‘ 𝑠 ) ⊆ 𝑠 ↔ ∀ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑡 ) ⊆ 𝑠 ) ) |
| 21 | 10 20 | bitrd | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) → ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑡 ) ⊆ 𝑠 ) ) |
| 22 | 21 | ex | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑠 ∈ 𝒫 𝑋 ) → ( ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) → ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑡 ) ⊆ 𝑠 ) ) ) |
| 23 | 22 | ralimdva | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) → ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑡 ) ⊆ 𝑠 ) ) ) |
| 24 | 23 | imp | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) → ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑡 ) ⊆ 𝑠 ) ) |
| 25 | 1 | isacs2 | ⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ↔ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑡 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑡 ) ⊆ 𝑠 ) ) ) |
| 26 | 6 24 25 | sylanbrc | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) → 𝐶 ∈ ( ACS ‘ 𝑋 ) ) |
| 27 | 5 26 | impbii | ⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ↔ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) ) |