This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closure system is algebraic iff the closure of a generating set is the union of the closures of its finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | acsdrscl.f | |- F = ( mrCls ` C ) |
|
| Assertion | isacs5 | |- ( C e. ( ACS ` X ) <-> ( C e. ( Moore ` X ) /\ A. s e. ~P X ( F ` s ) = U. ( F " ( ~P s i^i Fin ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acsdrscl.f | |- F = ( mrCls ` C ) |
|
| 2 | isacs3lem | |- ( C e. ( ACS ` X ) -> ( C e. ( Moore ` X ) /\ A. s e. ~P C ( ( toInc ` s ) e. Dirset -> U. s e. C ) ) ) |
|
| 3 | 1 | isacs4lem | |- ( ( C e. ( Moore ` X ) /\ A. s e. ~P C ( ( toInc ` s ) e. Dirset -> U. s e. C ) ) -> ( C e. ( Moore ` X ) /\ A. t e. ~P ~P X ( ( toInc ` t ) e. Dirset -> ( F ` U. t ) = U. ( F " t ) ) ) ) |
| 4 | 1 | isacs5lem | |- ( ( C e. ( Moore ` X ) /\ A. t e. ~P ~P X ( ( toInc ` t ) e. Dirset -> ( F ` U. t ) = U. ( F " t ) ) ) -> ( C e. ( Moore ` X ) /\ A. s e. ~P X ( F ` s ) = U. ( F " ( ~P s i^i Fin ) ) ) ) |
| 5 | 2 3 4 | 3syl | |- ( C e. ( ACS ` X ) -> ( C e. ( Moore ` X ) /\ A. s e. ~P X ( F ` s ) = U. ( F " ( ~P s i^i Fin ) ) ) ) |
| 6 | simpl | |- ( ( C e. ( Moore ` X ) /\ A. s e. ~P X ( F ` s ) = U. ( F " ( ~P s i^i Fin ) ) ) -> C e. ( Moore ` X ) ) |
|
| 7 | elpwi | |- ( s e. ~P X -> s C_ X ) |
|
| 8 | 1 | mrcidb2 | |- ( ( C e. ( Moore ` X ) /\ s C_ X ) -> ( s e. C <-> ( F ` s ) C_ s ) ) |
| 9 | 7 8 | sylan2 | |- ( ( C e. ( Moore ` X ) /\ s e. ~P X ) -> ( s e. C <-> ( F ` s ) C_ s ) ) |
| 10 | 9 | adantr | |- ( ( ( C e. ( Moore ` X ) /\ s e. ~P X ) /\ ( F ` s ) = U. ( F " ( ~P s i^i Fin ) ) ) -> ( s e. C <-> ( F ` s ) C_ s ) ) |
| 11 | simpr | |- ( ( ( C e. ( Moore ` X ) /\ s e. ~P X ) /\ ( F ` s ) = U. ( F " ( ~P s i^i Fin ) ) ) -> ( F ` s ) = U. ( F " ( ~P s i^i Fin ) ) ) |
|
| 12 | 1 | mrcf | |- ( C e. ( Moore ` X ) -> F : ~P X --> C ) |
| 13 | ffun | |- ( F : ~P X --> C -> Fun F ) |
|
| 14 | funiunfv | |- ( Fun F -> U_ t e. ( ~P s i^i Fin ) ( F ` t ) = U. ( F " ( ~P s i^i Fin ) ) ) |
|
| 15 | 12 13 14 | 3syl | |- ( C e. ( Moore ` X ) -> U_ t e. ( ~P s i^i Fin ) ( F ` t ) = U. ( F " ( ~P s i^i Fin ) ) ) |
| 16 | 15 | ad2antrr | |- ( ( ( C e. ( Moore ` X ) /\ s e. ~P X ) /\ ( F ` s ) = U. ( F " ( ~P s i^i Fin ) ) ) -> U_ t e. ( ~P s i^i Fin ) ( F ` t ) = U. ( F " ( ~P s i^i Fin ) ) ) |
| 17 | 11 16 | eqtr4d | |- ( ( ( C e. ( Moore ` X ) /\ s e. ~P X ) /\ ( F ` s ) = U. ( F " ( ~P s i^i Fin ) ) ) -> ( F ` s ) = U_ t e. ( ~P s i^i Fin ) ( F ` t ) ) |
| 18 | 17 | sseq1d | |- ( ( ( C e. ( Moore ` X ) /\ s e. ~P X ) /\ ( F ` s ) = U. ( F " ( ~P s i^i Fin ) ) ) -> ( ( F ` s ) C_ s <-> U_ t e. ( ~P s i^i Fin ) ( F ` t ) C_ s ) ) |
| 19 | iunss | |- ( U_ t e. ( ~P s i^i Fin ) ( F ` t ) C_ s <-> A. t e. ( ~P s i^i Fin ) ( F ` t ) C_ s ) |
|
| 20 | 18 19 | bitrdi | |- ( ( ( C e. ( Moore ` X ) /\ s e. ~P X ) /\ ( F ` s ) = U. ( F " ( ~P s i^i Fin ) ) ) -> ( ( F ` s ) C_ s <-> A. t e. ( ~P s i^i Fin ) ( F ` t ) C_ s ) ) |
| 21 | 10 20 | bitrd | |- ( ( ( C e. ( Moore ` X ) /\ s e. ~P X ) /\ ( F ` s ) = U. ( F " ( ~P s i^i Fin ) ) ) -> ( s e. C <-> A. t e. ( ~P s i^i Fin ) ( F ` t ) C_ s ) ) |
| 22 | 21 | ex | |- ( ( C e. ( Moore ` X ) /\ s e. ~P X ) -> ( ( F ` s ) = U. ( F " ( ~P s i^i Fin ) ) -> ( s e. C <-> A. t e. ( ~P s i^i Fin ) ( F ` t ) C_ s ) ) ) |
| 23 | 22 | ralimdva | |- ( C e. ( Moore ` X ) -> ( A. s e. ~P X ( F ` s ) = U. ( F " ( ~P s i^i Fin ) ) -> A. s e. ~P X ( s e. C <-> A. t e. ( ~P s i^i Fin ) ( F ` t ) C_ s ) ) ) |
| 24 | 23 | imp | |- ( ( C e. ( Moore ` X ) /\ A. s e. ~P X ( F ` s ) = U. ( F " ( ~P s i^i Fin ) ) ) -> A. s e. ~P X ( s e. C <-> A. t e. ( ~P s i^i Fin ) ( F ` t ) C_ s ) ) |
| 25 | 1 | isacs2 | |- ( C e. ( ACS ` X ) <-> ( C e. ( Moore ` X ) /\ A. s e. ~P X ( s e. C <-> A. t e. ( ~P s i^i Fin ) ( F ` t ) C_ s ) ) ) |
| 26 | 6 24 25 | sylanbrc | |- ( ( C e. ( Moore ` X ) /\ A. s e. ~P X ( F ` s ) = U. ( F " ( ~P s i^i Fin ) ) ) -> C e. ( ACS ` X ) ) |
| 27 | 5 26 | impbii | |- ( C e. ( ACS ` X ) <-> ( C e. ( Moore ` X ) /\ A. s e. ~P X ( F ` s ) = U. ( F " ( ~P s i^i Fin ) ) ) ) |