This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If closure commutes with directed unions, then the closure of a set is the closure of its finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | acsdrscl.f | ⊢ 𝐹 = ( mrCls ‘ 𝐶 ) | |
| Assertion | isacs5lem | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑡 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) ) → ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acsdrscl.f | ⊢ 𝐹 = ( mrCls ‘ 𝐶 ) | |
| 2 | unifpw | ⊢ ∪ ( 𝒫 𝑠 ∩ Fin ) = 𝑠 | |
| 3 | 2 | fveq2i | ⊢ ( 𝐹 ‘ ∪ ( 𝒫 𝑠 ∩ Fin ) ) = ( 𝐹 ‘ 𝑠 ) |
| 4 | vex | ⊢ 𝑠 ∈ V | |
| 5 | fpwipodrs | ⊢ ( 𝑠 ∈ V → ( toInc ‘ ( 𝒫 𝑠 ∩ Fin ) ) ∈ Dirset ) | |
| 6 | 4 5 | mp1i | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑡 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) → ( toInc ‘ ( 𝒫 𝑠 ∩ Fin ) ) ∈ Dirset ) |
| 7 | fveq2 | ⊢ ( 𝑡 = ( 𝒫 𝑠 ∩ Fin ) → ( toInc ‘ 𝑡 ) = ( toInc ‘ ( 𝒫 𝑠 ∩ Fin ) ) ) | |
| 8 | 7 | eleq1d | ⊢ ( 𝑡 = ( 𝒫 𝑠 ∩ Fin ) → ( ( toInc ‘ 𝑡 ) ∈ Dirset ↔ ( toInc ‘ ( 𝒫 𝑠 ∩ Fin ) ) ∈ Dirset ) ) |
| 9 | unieq | ⊢ ( 𝑡 = ( 𝒫 𝑠 ∩ Fin ) → ∪ 𝑡 = ∪ ( 𝒫 𝑠 ∩ Fin ) ) | |
| 10 | 9 | fveq2d | ⊢ ( 𝑡 = ( 𝒫 𝑠 ∩ Fin ) → ( 𝐹 ‘ ∪ 𝑡 ) = ( 𝐹 ‘ ∪ ( 𝒫 𝑠 ∩ Fin ) ) ) |
| 11 | imaeq2 | ⊢ ( 𝑡 = ( 𝒫 𝑠 ∩ Fin ) → ( 𝐹 “ 𝑡 ) = ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) | |
| 12 | 11 | unieqd | ⊢ ( 𝑡 = ( 𝒫 𝑠 ∩ Fin ) → ∪ ( 𝐹 “ 𝑡 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) |
| 13 | 10 12 | eqeq12d | ⊢ ( 𝑡 = ( 𝒫 𝑠 ∩ Fin ) → ( ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ↔ ( 𝐹 ‘ ∪ ( 𝒫 𝑠 ∩ Fin ) ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) ) |
| 14 | 8 13 | imbi12d | ⊢ ( 𝑡 = ( 𝒫 𝑠 ∩ Fin ) → ( ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) ↔ ( ( toInc ‘ ( 𝒫 𝑠 ∩ Fin ) ) ∈ Dirset → ( 𝐹 ‘ ∪ ( 𝒫 𝑠 ∩ Fin ) ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) ) ) |
| 15 | simplr | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑡 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) → ∀ 𝑡 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) ) | |
| 16 | inss1 | ⊢ ( 𝒫 𝑠 ∩ Fin ) ⊆ 𝒫 𝑠 | |
| 17 | elpwi | ⊢ ( 𝑠 ∈ 𝒫 𝑋 → 𝑠 ⊆ 𝑋 ) | |
| 18 | 17 | sspwd | ⊢ ( 𝑠 ∈ 𝒫 𝑋 → 𝒫 𝑠 ⊆ 𝒫 𝑋 ) |
| 19 | 18 | adantl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑠 ∈ 𝒫 𝑋 ) → 𝒫 𝑠 ⊆ 𝒫 𝑋 ) |
| 20 | 16 19 | sstrid | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑠 ∈ 𝒫 𝑋 ) → ( 𝒫 𝑠 ∩ Fin ) ⊆ 𝒫 𝑋 ) |
| 21 | vpwex | ⊢ 𝒫 𝑠 ∈ V | |
| 22 | 21 | inex1 | ⊢ ( 𝒫 𝑠 ∩ Fin ) ∈ V |
| 23 | 22 | elpw | ⊢ ( ( 𝒫 𝑠 ∩ Fin ) ∈ 𝒫 𝒫 𝑋 ↔ ( 𝒫 𝑠 ∩ Fin ) ⊆ 𝒫 𝑋 ) |
| 24 | 20 23 | sylibr | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑠 ∈ 𝒫 𝑋 ) → ( 𝒫 𝑠 ∩ Fin ) ∈ 𝒫 𝒫 𝑋 ) |
| 25 | 24 | adantlr | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑡 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) → ( 𝒫 𝑠 ∩ Fin ) ∈ 𝒫 𝒫 𝑋 ) |
| 26 | 14 15 25 | rspcdva | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑡 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) → ( ( toInc ‘ ( 𝒫 𝑠 ∩ Fin ) ) ∈ Dirset → ( 𝐹 ‘ ∪ ( 𝒫 𝑠 ∩ Fin ) ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) ) |
| 27 | 6 26 | mpd | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑡 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) → ( 𝐹 ‘ ∪ ( 𝒫 𝑠 ∩ Fin ) ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) |
| 28 | 3 27 | eqtr3id | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑡 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) → ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) |
| 29 | 28 | ralrimiva | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑡 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) ) → ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) |
| 30 | 29 | ex | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( ∀ 𝑡 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) → ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) ) |
| 31 | 30 | imdistani | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑡 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) ) → ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) ) |