This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In the definition of an algebraic closure system, we may always take the operation being closed over as the Moore closure. (Contributed by Stefan O'Rear, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isacs2.f | ⊢ 𝐹 = ( mrCls ‘ 𝐶 ) | |
| Assertion | isacs2 | ⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ↔ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isacs2.f | ⊢ 𝐹 = ( mrCls ‘ 𝐶 ) | |
| 2 | isacs | ⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ↔ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∃ 𝑓 ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑡 ∩ Fin ) ) ⊆ 𝑡 ) ) ) ) | |
| 3 | ffun | ⊢ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 → Fun 𝑓 ) | |
| 4 | funiunfv | ⊢ ( Fun 𝑓 → ∪ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) = ∪ ( 𝑓 “ ( 𝒫 𝑡 ∩ Fin ) ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 → ∪ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) = ∪ ( 𝑓 “ ( 𝒫 𝑡 ∩ Fin ) ) ) |
| 6 | 5 | sseq1d | ⊢ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 → ( ∪ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑡 ∩ Fin ) ) ⊆ 𝑡 ) ) |
| 7 | iunss | ⊢ ( ∪ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) | |
| 8 | 6 7 | bitr3di | ⊢ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 → ( ∪ ( 𝑓 “ ( 𝒫 𝑡 ∩ Fin ) ) ⊆ 𝑡 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) |
| 9 | 8 | bibi2d | ⊢ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 → ( ( 𝑡 ∈ 𝐶 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑡 ∩ Fin ) ) ⊆ 𝑡 ) ↔ ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) |
| 10 | 9 | ralbidv | ⊢ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 → ( ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑡 ∩ Fin ) ) ⊆ 𝑡 ) ↔ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) |
| 11 | 10 | pm5.32i | ⊢ ( ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑡 ∩ Fin ) ) ⊆ 𝑡 ) ) ↔ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) |
| 12 | 11 | exbii | ⊢ ( ∃ 𝑓 ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑡 ∩ Fin ) ) ⊆ 𝑡 ) ) ↔ ∃ 𝑓 ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) |
| 13 | simpll | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑠 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) | |
| 14 | elinel1 | ⊢ ( 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) → 𝑦 ∈ 𝒫 𝑠 ) | |
| 15 | 14 | elpwid | ⊢ ( 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) → 𝑦 ⊆ 𝑠 ) |
| 16 | 15 | adantl | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑠 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ) → 𝑦 ⊆ 𝑠 ) |
| 17 | simplr | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑠 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ) → 𝑠 ∈ 𝐶 ) | |
| 18 | 1 | mrcsscl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑦 ⊆ 𝑠 ∧ 𝑠 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) |
| 19 | 13 16 17 18 | syl3anc | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑠 ∈ 𝐶 ) ∧ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ) → ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) |
| 20 | 19 | ralrimiva | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑠 ∈ 𝐶 ) → ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) |
| 21 | 20 | ad4ant14 | ⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑠 ∈ 𝐶 ) → ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) |
| 22 | fveq2 | ⊢ ( 𝑧 = 𝑦 → ( 𝑓 ‘ 𝑧 ) = ( 𝑓 ‘ 𝑦 ) ) | |
| 23 | 22 | sseq1d | ⊢ ( 𝑧 = 𝑦 → ( ( 𝑓 ‘ 𝑧 ) ⊆ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑦 ) ) ) |
| 24 | simplll | ⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) | |
| 25 | 15 | adantl | ⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ) → 𝑦 ⊆ 𝑠 ) |
| 26 | elpwi | ⊢ ( 𝑠 ∈ 𝒫 𝑋 → 𝑠 ⊆ 𝑋 ) | |
| 27 | 26 | ad2antlr | ⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ) → 𝑠 ⊆ 𝑋 ) |
| 28 | 25 27 | sstrd | ⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ) → 𝑦 ⊆ 𝑋 ) |
| 29 | 1 | mrccl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑦 ⊆ 𝑋 ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐶 ) |
| 30 | 24 28 29 | syl2anc | ⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐶 ) |
| 31 | eleq1 | ⊢ ( 𝑡 = ( 𝐹 ‘ 𝑦 ) → ( 𝑡 ∈ 𝐶 ↔ ( 𝐹 ‘ 𝑦 ) ∈ 𝐶 ) ) | |
| 32 | pweq | ⊢ ( 𝑡 = ( 𝐹 ‘ 𝑦 ) → 𝒫 𝑡 = 𝒫 ( 𝐹 ‘ 𝑦 ) ) | |
| 33 | 32 | ineq1d | ⊢ ( 𝑡 = ( 𝐹 ‘ 𝑦 ) → ( 𝒫 𝑡 ∩ Fin ) = ( 𝒫 ( 𝐹 ‘ 𝑦 ) ∩ Fin ) ) |
| 34 | sseq2 | ⊢ ( 𝑡 = ( 𝐹 ‘ 𝑦 ) → ( ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ↔ ( 𝑓 ‘ 𝑧 ) ⊆ ( 𝐹 ‘ 𝑦 ) ) ) | |
| 35 | 33 34 | raleqbidv | ⊢ ( 𝑡 = ( 𝐹 ‘ 𝑦 ) → ( ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ↔ ∀ 𝑧 ∈ ( 𝒫 ( 𝐹 ‘ 𝑦 ) ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ ( 𝐹 ‘ 𝑦 ) ) ) |
| 36 | 31 35 | bibi12d | ⊢ ( 𝑡 = ( 𝐹 ‘ 𝑦 ) → ( ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ↔ ( ( 𝐹 ‘ 𝑦 ) ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 ( 𝐹 ‘ 𝑦 ) ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 37 | simprr | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) → ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) | |
| 38 | 37 | ad2antrr | ⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ) → ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) |
| 39 | mresspw | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐶 ⊆ 𝒫 𝑋 ) | |
| 40 | 39 | ad3antrrr | ⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ) → 𝐶 ⊆ 𝒫 𝑋 ) |
| 41 | 40 30 | sseldd | ⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝒫 𝑋 ) |
| 42 | 36 38 41 | rspcdva | ⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ) → ( ( 𝐹 ‘ 𝑦 ) ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 ( 𝐹 ‘ 𝑦 ) ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ ( 𝐹 ‘ 𝑦 ) ) ) |
| 43 | 30 42 | mpbid | ⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ) → ∀ 𝑧 ∈ ( 𝒫 ( 𝐹 ‘ 𝑦 ) ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ ( 𝐹 ‘ 𝑦 ) ) |
| 44 | 24 1 28 | mrcssidd | ⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ) → 𝑦 ⊆ ( 𝐹 ‘ 𝑦 ) ) |
| 45 | vex | ⊢ 𝑦 ∈ V | |
| 46 | 45 | elpw | ⊢ ( 𝑦 ∈ 𝒫 ( 𝐹 ‘ 𝑦 ) ↔ 𝑦 ⊆ ( 𝐹 ‘ 𝑦 ) ) |
| 47 | 44 46 | sylibr | ⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ) → 𝑦 ∈ 𝒫 ( 𝐹 ‘ 𝑦 ) ) |
| 48 | elinel2 | ⊢ ( 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) → 𝑦 ∈ Fin ) | |
| 49 | 48 | adantl | ⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ) → 𝑦 ∈ Fin ) |
| 50 | 47 49 | elind | ⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ) → 𝑦 ∈ ( 𝒫 ( 𝐹 ‘ 𝑦 ) ∩ Fin ) ) |
| 51 | 23 43 50 | rspcdva | ⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ) → ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑦 ) ) |
| 52 | sstr2 | ⊢ ( ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝐹 ‘ 𝑦 ) → ( ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 → ( 𝑓 ‘ 𝑦 ) ⊆ 𝑠 ) ) | |
| 53 | 51 52 | syl | ⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ) → ( ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 → ( 𝑓 ‘ 𝑦 ) ⊆ 𝑠 ) ) |
| 54 | 53 | ralimdva | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) → ( ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 → ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝑓 ‘ 𝑦 ) ⊆ 𝑠 ) ) |
| 55 | 54 | imp | ⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) → ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝑓 ‘ 𝑦 ) ⊆ 𝑠 ) |
| 56 | fveq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑧 ) ) | |
| 57 | 56 | sseq1d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑓 ‘ 𝑦 ) ⊆ 𝑠 ↔ ( 𝑓 ‘ 𝑧 ) ⊆ 𝑠 ) ) |
| 58 | 57 | cbvralvw | ⊢ ( ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝑓 ‘ 𝑦 ) ⊆ 𝑠 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑠 ) |
| 59 | 55 58 | sylib | ⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) → ∀ 𝑧 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑠 ) |
| 60 | eleq1 | ⊢ ( 𝑡 = 𝑠 → ( 𝑡 ∈ 𝐶 ↔ 𝑠 ∈ 𝐶 ) ) | |
| 61 | pweq | ⊢ ( 𝑡 = 𝑠 → 𝒫 𝑡 = 𝒫 𝑠 ) | |
| 62 | 61 | ineq1d | ⊢ ( 𝑡 = 𝑠 → ( 𝒫 𝑡 ∩ Fin ) = ( 𝒫 𝑠 ∩ Fin ) ) |
| 63 | sseq2 | ⊢ ( 𝑡 = 𝑠 → ( ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ↔ ( 𝑓 ‘ 𝑧 ) ⊆ 𝑠 ) ) | |
| 64 | 62 63 | raleqbidv | ⊢ ( 𝑡 = 𝑠 → ( ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑠 ) ) |
| 65 | 60 64 | bibi12d | ⊢ ( 𝑡 = 𝑠 → ( ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ↔ ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑠 ) ) ) |
| 66 | 37 | ad2antrr | ⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) → ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) |
| 67 | simplr | ⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) → 𝑠 ∈ 𝒫 𝑋 ) | |
| 68 | 65 66 67 | rspcdva | ⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) → ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑠 ) ) |
| 69 | 59 68 | mpbird | ⊢ ( ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) ∧ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) → 𝑠 ∈ 𝐶 ) |
| 70 | 21 69 | impbida | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑋 ) → ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) ) |
| 71 | 70 | ralrimiva | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) → ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) ) |
| 72 | 71 | ex | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) → ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) ) ) |
| 73 | 72 | exlimdv | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( ∃ 𝑓 ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) → ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) ) ) |
| 74 | 1 | mrcf | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐹 : 𝒫 𝑋 ⟶ 𝐶 ) |
| 75 | 74 39 | fssd | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐹 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ) |
| 76 | 1 | fvexi | ⊢ 𝐹 ∈ V |
| 77 | feq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ↔ 𝐹 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ) ) | |
| 78 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 79 | 78 | sseq1d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ↔ ( 𝐹 ‘ 𝑧 ) ⊆ 𝑡 ) ) |
| 80 | 79 | ralbidv | ⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝐹 ‘ 𝑧 ) ⊆ 𝑡 ) ) |
| 81 | fveq2 | ⊢ ( 𝑧 = 𝑦 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 82 | 81 | sseq1d | ⊢ ( 𝑧 = 𝑦 → ( ( 𝐹 ‘ 𝑧 ) ⊆ 𝑡 ↔ ( 𝐹 ‘ 𝑦 ) ⊆ 𝑡 ) ) |
| 83 | 82 | cbvralvw | ⊢ ( ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝐹 ‘ 𝑧 ) ⊆ 𝑡 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑡 ) |
| 84 | 80 83 | bitrdi | ⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑡 ) ) |
| 85 | 84 | bibi2d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ↔ ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑡 ) ) ) |
| 86 | 85 | ralbidv | ⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ↔ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑡 ) ) ) |
| 87 | sseq2 | ⊢ ( 𝑡 = 𝑠 → ( ( 𝐹 ‘ 𝑦 ) ⊆ 𝑡 ↔ ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) ) | |
| 88 | 62 87 | raleqbidv | ⊢ ( 𝑡 = 𝑠 → ( ∀ 𝑦 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑡 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) ) |
| 89 | 60 88 | bibi12d | ⊢ ( 𝑡 = 𝑠 → ( ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑡 ) ↔ ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) ) ) |
| 90 | 89 | cbvralvw | ⊢ ( ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑡 ) ↔ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) ) |
| 91 | 86 90 | bitrdi | ⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ↔ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) ) ) |
| 92 | 77 91 | anbi12d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ↔ ( 𝐹 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) ) ) ) |
| 93 | 76 92 | spcev | ⊢ ( ( 𝐹 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) ) → ∃ 𝑓 ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) |
| 94 | 75 93 | sylan | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) ) → ∃ 𝑓 ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) |
| 95 | 94 | ex | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) → ∃ 𝑓 ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ) ) |
| 96 | 73 95 | impbid | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( ∃ 𝑓 ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∀ 𝑧 ∈ ( 𝒫 𝑡 ∩ Fin ) ( 𝑓 ‘ 𝑧 ) ⊆ 𝑡 ) ) ↔ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) ) ) |
| 97 | 12 96 | bitrid | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( ∃ 𝑓 ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑡 ∩ Fin ) ) ⊆ 𝑡 ) ) ↔ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) ) ) |
| 98 | 97 | pm5.32i | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∃ 𝑓 ( 𝑓 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝑡 ∈ 𝐶 ↔ ∪ ( 𝑓 “ ( 𝒫 𝑡 ∩ Fin ) ) ⊆ 𝑡 ) ) ) ↔ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) ) ) |
| 99 | 2 98 | bitri | ⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ↔ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) ) ) |