This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closure system is algebraic iff closure commutes with directed unions. (Contributed by Stefan O'Rear, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | acsdrscl.f | ⊢ 𝐹 = ( mrCls ‘ 𝐶 ) | |
| Assertion | isacs4 | ⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ↔ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑠 ) = ∪ ( 𝐹 “ 𝑠 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acsdrscl.f | ⊢ 𝐹 = ( mrCls ‘ 𝐶 ) | |
| 2 | isacs3lem | ⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑡 ∈ 𝒫 𝐶 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ∪ 𝑡 ∈ 𝐶 ) ) ) | |
| 3 | 1 | isacs4lem | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑡 ∈ 𝒫 𝐶 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ∪ 𝑡 ∈ 𝐶 ) ) → ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑠 ) = ∪ ( 𝐹 “ 𝑠 ) ) ) ) |
| 4 | 2 3 | syl | ⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑠 ) = ∪ ( 𝐹 “ 𝑠 ) ) ) ) |
| 5 | 1 | isacs5lem | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑠 ) = ∪ ( 𝐹 “ 𝑠 ) ) ) → ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝐹 ‘ 𝑡 ) = ∪ ( 𝐹 “ ( 𝒫 𝑡 ∩ Fin ) ) ) ) |
| 6 | 1 | isacs5 | ⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ↔ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑡 ∈ 𝒫 𝑋 ( 𝐹 ‘ 𝑡 ) = ∪ ( 𝐹 “ ( 𝒫 𝑡 ∩ Fin ) ) ) ) |
| 7 | 5 6 | sylibr | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑠 ) = ∪ ( 𝐹 “ 𝑠 ) ) ) → 𝐶 ∈ ( ACS ‘ 𝑋 ) ) |
| 8 | 4 7 | impbii | ⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ↔ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑠 ) = ∪ ( 𝐹 “ 𝑠 ) ) ) ) |