This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a closure system in which directed unions of closed sets are closed, closure commutes with directed unions. (Contributed by Stefan O'Rear, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | acsdrscl.f | ⊢ 𝐹 = ( mrCls ‘ 𝐶 ) | |
| Assertion | isacs4lem | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ∪ 𝑠 ∈ 𝐶 ) ) → ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑡 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acsdrscl.f | ⊢ 𝐹 = ( mrCls ‘ 𝐶 ) | |
| 2 | simpll | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ∪ 𝑠 ∈ 𝐶 ) ) ∧ ( 𝑡 ∈ 𝒫 𝒫 𝑋 ∧ ( toInc ‘ 𝑡 ) ∈ Dirset ) ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) | |
| 3 | elpwi | ⊢ ( 𝑡 ∈ 𝒫 𝒫 𝑋 → 𝑡 ⊆ 𝒫 𝑋 ) | |
| 4 | 3 | ad2antrl | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ∪ 𝑠 ∈ 𝐶 ) ) ∧ ( 𝑡 ∈ 𝒫 𝒫 𝑋 ∧ ( toInc ‘ 𝑡 ) ∈ Dirset ) ) → 𝑡 ⊆ 𝒫 𝑋 ) |
| 5 | 1 | mrcuni | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑡 ⊆ 𝒫 𝑋 ) → ( 𝐹 ‘ ∪ 𝑡 ) = ( 𝐹 ‘ ∪ ( 𝐹 “ 𝑡 ) ) ) |
| 6 | 2 4 5 | syl2anc | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ∪ 𝑠 ∈ 𝐶 ) ) ∧ ( 𝑡 ∈ 𝒫 𝒫 𝑋 ∧ ( toInc ‘ 𝑡 ) ∈ Dirset ) ) → ( 𝐹 ‘ ∪ 𝑡 ) = ( 𝐹 ‘ ∪ ( 𝐹 “ 𝑡 ) ) ) |
| 7 | 1 | mrcf | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐹 : 𝒫 𝑋 ⟶ 𝐶 ) |
| 8 | 7 | ffnd | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐹 Fn 𝒫 𝑋 ) |
| 9 | 8 | adantr | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑡 ∈ 𝒫 𝒫 𝑋 ∧ ( toInc ‘ 𝑡 ) ∈ Dirset ) ) → 𝐹 Fn 𝒫 𝑋 ) |
| 10 | simpll | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑡 ∈ 𝒫 𝒫 𝑋 ∧ ( toInc ‘ 𝑡 ) ∈ Dirset ) ) ∧ ( 𝑥 ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑋 ) ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) | |
| 11 | simprl | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑡 ∈ 𝒫 𝒫 𝑋 ∧ ( toInc ‘ 𝑡 ) ∈ Dirset ) ) ∧ ( 𝑥 ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑋 ) ) → 𝑥 ⊆ 𝑦 ) | |
| 12 | simprr | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑡 ∈ 𝒫 𝒫 𝑋 ∧ ( toInc ‘ 𝑡 ) ∈ Dirset ) ) ∧ ( 𝑥 ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑋 ) ) → 𝑦 ⊆ 𝑋 ) | |
| 13 | 10 1 11 12 | mrcssd | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑡 ∈ 𝒫 𝒫 𝑋 ∧ ( toInc ‘ 𝑡 ) ∈ Dirset ) ) ∧ ( 𝑥 ⊆ 𝑦 ∧ 𝑦 ⊆ 𝑋 ) ) → ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ 𝑦 ) ) |
| 14 | simprr | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑡 ∈ 𝒫 𝒫 𝑋 ∧ ( toInc ‘ 𝑡 ) ∈ Dirset ) ) → ( toInc ‘ 𝑡 ) ∈ Dirset ) | |
| 15 | 3 | ad2antrl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑡 ∈ 𝒫 𝒫 𝑋 ∧ ( toInc ‘ 𝑡 ) ∈ Dirset ) ) → 𝑡 ⊆ 𝒫 𝑋 ) |
| 16 | 1 | fvexi | ⊢ 𝐹 ∈ V |
| 17 | 16 | imaex | ⊢ ( 𝐹 “ 𝑡 ) ∈ V |
| 18 | 17 | a1i | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑡 ∈ 𝒫 𝒫 𝑋 ∧ ( toInc ‘ 𝑡 ) ∈ Dirset ) ) → ( 𝐹 “ 𝑡 ) ∈ V ) |
| 19 | 9 13 14 15 18 | ipodrsima | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ( 𝑡 ∈ 𝒫 𝒫 𝑋 ∧ ( toInc ‘ 𝑡 ) ∈ Dirset ) ) → ( toInc ‘ ( 𝐹 “ 𝑡 ) ) ∈ Dirset ) |
| 20 | 19 | adantlr | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ∪ 𝑠 ∈ 𝐶 ) ) ∧ ( 𝑡 ∈ 𝒫 𝒫 𝑋 ∧ ( toInc ‘ 𝑡 ) ∈ Dirset ) ) → ( toInc ‘ ( 𝐹 “ 𝑡 ) ) ∈ Dirset ) |
| 21 | fveq2 | ⊢ ( 𝑠 = ( 𝐹 “ 𝑡 ) → ( toInc ‘ 𝑠 ) = ( toInc ‘ ( 𝐹 “ 𝑡 ) ) ) | |
| 22 | 21 | eleq1d | ⊢ ( 𝑠 = ( 𝐹 “ 𝑡 ) → ( ( toInc ‘ 𝑠 ) ∈ Dirset ↔ ( toInc ‘ ( 𝐹 “ 𝑡 ) ) ∈ Dirset ) ) |
| 23 | unieq | ⊢ ( 𝑠 = ( 𝐹 “ 𝑡 ) → ∪ 𝑠 = ∪ ( 𝐹 “ 𝑡 ) ) | |
| 24 | 23 | eleq1d | ⊢ ( 𝑠 = ( 𝐹 “ 𝑡 ) → ( ∪ 𝑠 ∈ 𝐶 ↔ ∪ ( 𝐹 “ 𝑡 ) ∈ 𝐶 ) ) |
| 25 | 22 24 | imbi12d | ⊢ ( 𝑠 = ( 𝐹 “ 𝑡 ) → ( ( ( toInc ‘ 𝑠 ) ∈ Dirset → ∪ 𝑠 ∈ 𝐶 ) ↔ ( ( toInc ‘ ( 𝐹 “ 𝑡 ) ) ∈ Dirset → ∪ ( 𝐹 “ 𝑡 ) ∈ 𝐶 ) ) ) |
| 26 | simplr | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ∪ 𝑠 ∈ 𝐶 ) ) ∧ ( 𝑡 ∈ 𝒫 𝒫 𝑋 ∧ ( toInc ‘ 𝑡 ) ∈ Dirset ) ) → ∀ 𝑠 ∈ 𝒫 𝐶 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ∪ 𝑠 ∈ 𝐶 ) ) | |
| 27 | imassrn | ⊢ ( 𝐹 “ 𝑡 ) ⊆ ran 𝐹 | |
| 28 | 7 | frnd | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ran 𝐹 ⊆ 𝐶 ) |
| 29 | 27 28 | sstrid | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝐹 “ 𝑡 ) ⊆ 𝐶 ) |
| 30 | 17 | elpw | ⊢ ( ( 𝐹 “ 𝑡 ) ∈ 𝒫 𝐶 ↔ ( 𝐹 “ 𝑡 ) ⊆ 𝐶 ) |
| 31 | 29 30 | sylibr | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝐹 “ 𝑡 ) ∈ 𝒫 𝐶 ) |
| 32 | 31 | ad2antrr | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ∪ 𝑠 ∈ 𝐶 ) ) ∧ ( 𝑡 ∈ 𝒫 𝒫 𝑋 ∧ ( toInc ‘ 𝑡 ) ∈ Dirset ) ) → ( 𝐹 “ 𝑡 ) ∈ 𝒫 𝐶 ) |
| 33 | 25 26 32 | rspcdva | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ∪ 𝑠 ∈ 𝐶 ) ) ∧ ( 𝑡 ∈ 𝒫 𝒫 𝑋 ∧ ( toInc ‘ 𝑡 ) ∈ Dirset ) ) → ( ( toInc ‘ ( 𝐹 “ 𝑡 ) ) ∈ Dirset → ∪ ( 𝐹 “ 𝑡 ) ∈ 𝐶 ) ) |
| 34 | 20 33 | mpd | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ∪ 𝑠 ∈ 𝐶 ) ) ∧ ( 𝑡 ∈ 𝒫 𝒫 𝑋 ∧ ( toInc ‘ 𝑡 ) ∈ Dirset ) ) → ∪ ( 𝐹 “ 𝑡 ) ∈ 𝐶 ) |
| 35 | 1 | mrcid | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∪ ( 𝐹 “ 𝑡 ) ∈ 𝐶 ) → ( 𝐹 ‘ ∪ ( 𝐹 “ 𝑡 ) ) = ∪ ( 𝐹 “ 𝑡 ) ) |
| 36 | 2 34 35 | syl2anc | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ∪ 𝑠 ∈ 𝐶 ) ) ∧ ( 𝑡 ∈ 𝒫 𝒫 𝑋 ∧ ( toInc ‘ 𝑡 ) ∈ Dirset ) ) → ( 𝐹 ‘ ∪ ( 𝐹 “ 𝑡 ) ) = ∪ ( 𝐹 “ 𝑡 ) ) |
| 37 | 6 36 | eqtrd | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ∪ 𝑠 ∈ 𝐶 ) ) ∧ ( 𝑡 ∈ 𝒫 𝒫 𝑋 ∧ ( toInc ‘ 𝑡 ) ∈ Dirset ) ) → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) |
| 38 | 37 | exp32 | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ∪ 𝑠 ∈ 𝐶 ) ) → ( 𝑡 ∈ 𝒫 𝒫 𝑋 → ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) ) ) |
| 39 | 38 | ralrimiv | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ∪ 𝑠 ∈ 𝐶 ) ) → ∀ 𝑡 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) ) |
| 40 | 39 | ex | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( ∀ 𝑠 ∈ 𝒫 𝐶 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ∪ 𝑠 ∈ 𝐶 ) → ∀ 𝑡 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) ) ) |
| 41 | 40 | imdistani | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ∪ 𝑠 ∈ 𝐶 ) ) → ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑡 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) ) ) |