This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set is closed in an algebraic closure system iff it contains all closures of finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isacs2.f | ⊢ 𝐹 = ( mrCls ‘ 𝐶 ) | |
| Assertion | acsfiel | ⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → ( 𝑆 ∈ 𝐶 ↔ ( 𝑆 ⊆ 𝑋 ∧ ∀ 𝑦 ∈ ( 𝒫 𝑆 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isacs2.f | ⊢ 𝐹 = ( mrCls ‘ 𝐶 ) | |
| 2 | acsmre | ⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) | |
| 3 | mress | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ∈ 𝐶 ) → 𝑆 ⊆ 𝑋 ) | |
| 4 | 2 3 | sylan | ⊢ ( ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ∧ 𝑆 ∈ 𝐶 ) → 𝑆 ⊆ 𝑋 ) |
| 5 | 4 | ex | ⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → ( 𝑆 ∈ 𝐶 → 𝑆 ⊆ 𝑋 ) ) |
| 6 | 5 | pm4.71rd | ⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → ( 𝑆 ∈ 𝐶 ↔ ( 𝑆 ⊆ 𝑋 ∧ 𝑆 ∈ 𝐶 ) ) ) |
| 7 | eleq1 | ⊢ ( 𝑠 = 𝑆 → ( 𝑠 ∈ 𝐶 ↔ 𝑆 ∈ 𝐶 ) ) | |
| 8 | pweq | ⊢ ( 𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆 ) | |
| 9 | 8 | ineq1d | ⊢ ( 𝑠 = 𝑆 → ( 𝒫 𝑠 ∩ Fin ) = ( 𝒫 𝑆 ∩ Fin ) ) |
| 10 | sseq2 | ⊢ ( 𝑠 = 𝑆 → ( ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ↔ ( 𝐹 ‘ 𝑦 ) ⊆ 𝑆 ) ) | |
| 11 | 9 10 | raleqbidv | ⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑆 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑆 ) ) |
| 12 | 7 11 | bibi12d | ⊢ ( 𝑠 = 𝑆 → ( ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) ↔ ( 𝑆 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑆 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑆 ) ) ) |
| 13 | 1 | isacs2 | ⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ↔ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) ) ) |
| 14 | 13 | simprbi | ⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) ) |
| 15 | 14 | adantr | ⊢ ( ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝑠 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑠 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑠 ) ) |
| 16 | elfvdm | ⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → 𝑋 ∈ dom ACS ) | |
| 17 | elpw2g | ⊢ ( 𝑋 ∈ dom ACS → ( 𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋 ) ) | |
| 18 | 16 17 | syl | ⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → ( 𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋 ) ) |
| 19 | 18 | biimpar | ⊢ ( ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 ∈ 𝒫 𝑋 ) |
| 20 | 12 15 19 | rspcdva | ⊢ ( ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑆 ∈ 𝐶 ↔ ∀ 𝑦 ∈ ( 𝒫 𝑆 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑆 ) ) |
| 21 | 20 | pm5.32da | ⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → ( ( 𝑆 ⊆ 𝑋 ∧ 𝑆 ∈ 𝐶 ) ↔ ( 𝑆 ⊆ 𝑋 ∧ ∀ 𝑦 ∈ ( 𝒫 𝑆 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑆 ) ) ) |
| 22 | 6 21 | bitrd | ⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → ( 𝑆 ∈ 𝐶 ↔ ( 𝑆 ⊆ 𝑋 ∧ ∀ 𝑦 ∈ ( 𝒫 𝑆 ∩ Fin ) ( 𝐹 ‘ 𝑦 ) ⊆ 𝑆 ) ) ) |