This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of an irrational with a nonzero rational is irrational. (Contributed by NM, 7-Nov-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | irrmul | ⊢ ( ( 𝐴 ∈ ( ℝ ∖ ℚ ) ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) → ( 𝐴 · 𝐵 ) ∈ ( ℝ ∖ ℚ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif | ⊢ ( 𝐴 ∈ ( ℝ ∖ ℚ ) ↔ ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ ) ) | |
| 2 | qre | ⊢ ( 𝐵 ∈ ℚ → 𝐵 ∈ ℝ ) | |
| 3 | remulcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 · 𝐵 ) ∈ ℝ ) | |
| 4 | 2 3 | sylan2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ ) → ( 𝐴 · 𝐵 ) ∈ ℝ ) |
| 5 | 4 | ad2ant2r | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 · 𝐵 ) ∈ ℝ ) |
| 6 | qdivcl | ⊢ ( ( ( 𝐴 · 𝐵 ) ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 · 𝐵 ) / 𝐵 ) ∈ ℚ ) | |
| 7 | 6 | 3expb | ⊢ ( ( ( 𝐴 · 𝐵 ) ∈ ℚ ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 · 𝐵 ) / 𝐵 ) ∈ ℚ ) |
| 8 | 7 | expcom | ⊢ ( ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 · 𝐵 ) ∈ ℚ → ( ( 𝐴 · 𝐵 ) / 𝐵 ) ∈ ℚ ) ) |
| 9 | 8 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 · 𝐵 ) ∈ ℚ → ( ( 𝐴 · 𝐵 ) / 𝐵 ) ∈ ℚ ) ) |
| 10 | qcn | ⊢ ( 𝐵 ∈ ℚ → 𝐵 ∈ ℂ ) | |
| 11 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 12 | divcan4 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 · 𝐵 ) / 𝐵 ) = 𝐴 ) | |
| 13 | 11 12 | syl3an1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 · 𝐵 ) / 𝐵 ) = 𝐴 ) |
| 14 | 10 13 | syl3an2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 · 𝐵 ) / 𝐵 ) = 𝐴 ) |
| 15 | 14 | 3expb | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 · 𝐵 ) / 𝐵 ) = 𝐴 ) |
| 16 | 15 | eleq1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ( ( ( 𝐴 · 𝐵 ) / 𝐵 ) ∈ ℚ ↔ 𝐴 ∈ ℚ ) ) |
| 17 | 9 16 | sylibd | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 · 𝐵 ) ∈ ℚ → 𝐴 ∈ ℚ ) ) |
| 18 | 17 | con3d | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ( ¬ 𝐴 ∈ ℚ → ¬ ( 𝐴 · 𝐵 ) ∈ ℚ ) ) |
| 19 | 18 | ex | ⊢ ( 𝐴 ∈ ℝ → ( ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) → ( ¬ 𝐴 ∈ ℚ → ¬ ( 𝐴 · 𝐵 ) ∈ ℚ ) ) ) |
| 20 | 19 | com23 | ⊢ ( 𝐴 ∈ ℝ → ( ¬ 𝐴 ∈ ℚ → ( ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) → ¬ ( 𝐴 · 𝐵 ) ∈ ℚ ) ) ) |
| 21 | 20 | imp31 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ¬ ( 𝐴 · 𝐵 ) ∈ ℚ ) |
| 22 | 5 21 | jca | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 · 𝐵 ) ∈ ℝ ∧ ¬ ( 𝐴 · 𝐵 ) ∈ ℚ ) ) |
| 23 | 22 | 3impb | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ ) ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 · 𝐵 ) ∈ ℝ ∧ ¬ ( 𝐴 · 𝐵 ) ∈ ℚ ) ) |
| 24 | 1 23 | syl3an1b | ⊢ ( ( 𝐴 ∈ ( ℝ ∖ ℚ ) ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 · 𝐵 ) ∈ ℝ ∧ ¬ ( 𝐴 · 𝐵 ) ∈ ℚ ) ) |
| 25 | eldif | ⊢ ( ( 𝐴 · 𝐵 ) ∈ ( ℝ ∖ ℚ ) ↔ ( ( 𝐴 · 𝐵 ) ∈ ℝ ∧ ¬ ( 𝐴 · 𝐵 ) ∈ ℚ ) ) | |
| 26 | 24 25 | sylibr | ⊢ ( ( 𝐴 ∈ ( ℝ ∖ ℚ ) ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) → ( 𝐴 · 𝐵 ) ∈ ( ℝ ∖ ℚ ) ) |