This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of an irrational with a nonzero rational is irrational. (Contributed by NM, 7-Nov-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | irrmul | |- ( ( A e. ( RR \ QQ ) /\ B e. QQ /\ B =/= 0 ) -> ( A x. B ) e. ( RR \ QQ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif | |- ( A e. ( RR \ QQ ) <-> ( A e. RR /\ -. A e. QQ ) ) |
|
| 2 | qre | |- ( B e. QQ -> B e. RR ) |
|
| 3 | remulcl | |- ( ( A e. RR /\ B e. RR ) -> ( A x. B ) e. RR ) |
|
| 4 | 2 3 | sylan2 | |- ( ( A e. RR /\ B e. QQ ) -> ( A x. B ) e. RR ) |
| 5 | 4 | ad2ant2r | |- ( ( ( A e. RR /\ -. A e. QQ ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( A x. B ) e. RR ) |
| 6 | qdivcl | |- ( ( ( A x. B ) e. QQ /\ B e. QQ /\ B =/= 0 ) -> ( ( A x. B ) / B ) e. QQ ) |
|
| 7 | 6 | 3expb | |- ( ( ( A x. B ) e. QQ /\ ( B e. QQ /\ B =/= 0 ) ) -> ( ( A x. B ) / B ) e. QQ ) |
| 8 | 7 | expcom | |- ( ( B e. QQ /\ B =/= 0 ) -> ( ( A x. B ) e. QQ -> ( ( A x. B ) / B ) e. QQ ) ) |
| 9 | 8 | adantl | |- ( ( A e. RR /\ ( B e. QQ /\ B =/= 0 ) ) -> ( ( A x. B ) e. QQ -> ( ( A x. B ) / B ) e. QQ ) ) |
| 10 | qcn | |- ( B e. QQ -> B e. CC ) |
|
| 11 | recn | |- ( A e. RR -> A e. CC ) |
|
| 12 | divcan4 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A x. B ) / B ) = A ) |
|
| 13 | 11 12 | syl3an1 | |- ( ( A e. RR /\ B e. CC /\ B =/= 0 ) -> ( ( A x. B ) / B ) = A ) |
| 14 | 10 13 | syl3an2 | |- ( ( A e. RR /\ B e. QQ /\ B =/= 0 ) -> ( ( A x. B ) / B ) = A ) |
| 15 | 14 | 3expb | |- ( ( A e. RR /\ ( B e. QQ /\ B =/= 0 ) ) -> ( ( A x. B ) / B ) = A ) |
| 16 | 15 | eleq1d | |- ( ( A e. RR /\ ( B e. QQ /\ B =/= 0 ) ) -> ( ( ( A x. B ) / B ) e. QQ <-> A e. QQ ) ) |
| 17 | 9 16 | sylibd | |- ( ( A e. RR /\ ( B e. QQ /\ B =/= 0 ) ) -> ( ( A x. B ) e. QQ -> A e. QQ ) ) |
| 18 | 17 | con3d | |- ( ( A e. RR /\ ( B e. QQ /\ B =/= 0 ) ) -> ( -. A e. QQ -> -. ( A x. B ) e. QQ ) ) |
| 19 | 18 | ex | |- ( A e. RR -> ( ( B e. QQ /\ B =/= 0 ) -> ( -. A e. QQ -> -. ( A x. B ) e. QQ ) ) ) |
| 20 | 19 | com23 | |- ( A e. RR -> ( -. A e. QQ -> ( ( B e. QQ /\ B =/= 0 ) -> -. ( A x. B ) e. QQ ) ) ) |
| 21 | 20 | imp31 | |- ( ( ( A e. RR /\ -. A e. QQ ) /\ ( B e. QQ /\ B =/= 0 ) ) -> -. ( A x. B ) e. QQ ) |
| 22 | 5 21 | jca | |- ( ( ( A e. RR /\ -. A e. QQ ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( ( A x. B ) e. RR /\ -. ( A x. B ) e. QQ ) ) |
| 23 | 22 | 3impb | |- ( ( ( A e. RR /\ -. A e. QQ ) /\ B e. QQ /\ B =/= 0 ) -> ( ( A x. B ) e. RR /\ -. ( A x. B ) e. QQ ) ) |
| 24 | 1 23 | syl3an1b | |- ( ( A e. ( RR \ QQ ) /\ B e. QQ /\ B =/= 0 ) -> ( ( A x. B ) e. RR /\ -. ( A x. B ) e. QQ ) ) |
| 25 | eldif | |- ( ( A x. B ) e. ( RR \ QQ ) <-> ( ( A x. B ) e. RR /\ -. ( A x. B ) e. QQ ) ) |
|
| 26 | 24 25 | sylibr | |- ( ( A e. ( RR \ QQ ) /\ B e. QQ /\ B =/= 0 ) -> ( A x. B ) e. ( RR \ QQ ) ) |