This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive rational is the quotient of two positive integers. (Contributed by AV, 29-Dec-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elpq | ⊢ ( ( 𝐴 ∈ ℚ ∧ 0 < 𝐴 ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elq | ⊢ ( 𝐴 ∈ ℚ ↔ ∃ 𝑧 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑧 / 𝑦 ) ) | |
| 2 | rexcom | ⊢ ( ∃ 𝑧 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑧 / 𝑦 ) ↔ ∃ 𝑦 ∈ ℕ ∃ 𝑧 ∈ ℤ 𝐴 = ( 𝑧 / 𝑦 ) ) | |
| 3 | 1 2 | bitri | ⊢ ( 𝐴 ∈ ℚ ↔ ∃ 𝑦 ∈ ℕ ∃ 𝑧 ∈ ℤ 𝐴 = ( 𝑧 / 𝑦 ) ) |
| 4 | breq2 | ⊢ ( 𝐴 = ( 𝑧 / 𝑦 ) → ( 0 < 𝐴 ↔ 0 < ( 𝑧 / 𝑦 ) ) ) | |
| 5 | zre | ⊢ ( 𝑧 ∈ ℤ → 𝑧 ∈ ℝ ) | |
| 6 | 5 | adantl | ⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) → 𝑧 ∈ ℝ ) |
| 7 | nnre | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) → 𝑦 ∈ ℝ ) |
| 9 | nngt0 | ⊢ ( 𝑦 ∈ ℕ → 0 < 𝑦 ) | |
| 10 | 9 | adantr | ⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) → 0 < 𝑦 ) |
| 11 | gt0div | ⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 0 < 𝑦 ) → ( 0 < 𝑧 ↔ 0 < ( 𝑧 / 𝑦 ) ) ) | |
| 12 | 6 8 10 11 | syl3anc | ⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) → ( 0 < 𝑧 ↔ 0 < ( 𝑧 / 𝑦 ) ) ) |
| 13 | 12 | bicomd | ⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) → ( 0 < ( 𝑧 / 𝑦 ) ↔ 0 < 𝑧 ) ) |
| 14 | 4 13 | sylan9bb | ⊢ ( ( 𝐴 = ( 𝑧 / 𝑦 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ) → ( 0 < 𝐴 ↔ 0 < 𝑧 ) ) |
| 15 | oveq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 / 𝑦 ) = ( 𝑧 / 𝑦 ) ) | |
| 16 | 15 | eqeq2d | ⊢ ( 𝑥 = 𝑧 → ( 𝐴 = ( 𝑥 / 𝑦 ) ↔ 𝐴 = ( 𝑧 / 𝑦 ) ) ) |
| 17 | elnnz | ⊢ ( 𝑧 ∈ ℕ ↔ ( 𝑧 ∈ ℤ ∧ 0 < 𝑧 ) ) | |
| 18 | 17 | simplbi2 | ⊢ ( 𝑧 ∈ ℤ → ( 0 < 𝑧 → 𝑧 ∈ ℕ ) ) |
| 19 | 18 | adantl | ⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) → ( 0 < 𝑧 → 𝑧 ∈ ℕ ) ) |
| 20 | 19 | adantl | ⊢ ( ( 𝐴 = ( 𝑧 / 𝑦 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ) → ( 0 < 𝑧 → 𝑧 ∈ ℕ ) ) |
| 21 | 20 | imp | ⊢ ( ( ( 𝐴 = ( 𝑧 / 𝑦 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ) ∧ 0 < 𝑧 ) → 𝑧 ∈ ℕ ) |
| 22 | simpll | ⊢ ( ( ( 𝐴 = ( 𝑧 / 𝑦 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ) ∧ 0 < 𝑧 ) → 𝐴 = ( 𝑧 / 𝑦 ) ) | |
| 23 | 16 21 22 | rspcedvdw | ⊢ ( ( ( 𝐴 = ( 𝑧 / 𝑦 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ) ∧ 0 < 𝑧 ) → ∃ 𝑥 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) |
| 24 | 23 | ex | ⊢ ( ( 𝐴 = ( 𝑧 / 𝑦 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ) → ( 0 < 𝑧 → ∃ 𝑥 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) ) |
| 25 | 14 24 | sylbid | ⊢ ( ( 𝐴 = ( 𝑧 / 𝑦 ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) ) → ( 0 < 𝐴 → ∃ 𝑥 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) ) |
| 26 | 25 | ex | ⊢ ( 𝐴 = ( 𝑧 / 𝑦 ) → ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) → ( 0 < 𝐴 → ∃ 𝑥 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) ) ) |
| 27 | 26 | com13 | ⊢ ( 0 < 𝐴 → ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℤ ) → ( 𝐴 = ( 𝑧 / 𝑦 ) → ∃ 𝑥 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) ) ) |
| 28 | 27 | impl | ⊢ ( ( ( 0 < 𝐴 ∧ 𝑦 ∈ ℕ ) ∧ 𝑧 ∈ ℤ ) → ( 𝐴 = ( 𝑧 / 𝑦 ) → ∃ 𝑥 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) ) |
| 29 | 28 | rexlimdva | ⊢ ( ( 0 < 𝐴 ∧ 𝑦 ∈ ℕ ) → ( ∃ 𝑧 ∈ ℤ 𝐴 = ( 𝑧 / 𝑦 ) → ∃ 𝑥 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) ) |
| 30 | 29 | reximdva | ⊢ ( 0 < 𝐴 → ( ∃ 𝑦 ∈ ℕ ∃ 𝑧 ∈ ℤ 𝐴 = ( 𝑧 / 𝑦 ) → ∃ 𝑦 ∈ ℕ ∃ 𝑥 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) ) |
| 31 | 3 30 | biimtrid | ⊢ ( 0 < 𝐴 → ( 𝐴 ∈ ℚ → ∃ 𝑦 ∈ ℕ ∃ 𝑥 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) ) |
| 32 | 31 | impcom | ⊢ ( ( 𝐴 ∈ ℚ ∧ 0 < 𝐴 ) → ∃ 𝑦 ∈ ℕ ∃ 𝑥 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) |
| 33 | rexcom | ⊢ ( ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ↔ ∃ 𝑦 ∈ ℕ ∃ 𝑥 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) | |
| 34 | 32 33 | sylibr | ⊢ ( ( 𝐴 ∈ ℚ ∧ 0 < 𝐴 ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) |