This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The GLB of the inclusion poset. (hypotheses "ipolub.s" and "ipoglb.t" could be eliminated with S e. dom G .) Could be significantly shortened if posglbdg is in quantified form. mrelatglb could potentially be shortened using this. See mrelatglbALT . (Contributed by Zhi Wang, 29-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipolub.i | ⊢ 𝐼 = ( toInc ‘ 𝐹 ) | |
| ipolub.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | ||
| ipolub.s | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐹 ) | ||
| ipoglb.g | ⊢ ( 𝜑 → 𝐺 = ( glb ‘ 𝐼 ) ) | ||
| ipoglbdm.t | ⊢ ( 𝜑 → 𝑇 = ∪ { 𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆 } ) | ||
| ipoglb.t | ⊢ ( 𝜑 → 𝑇 ∈ 𝐹 ) | ||
| Assertion | ipoglb | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑆 ) = 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipolub.i | ⊢ 𝐼 = ( toInc ‘ 𝐹 ) | |
| 2 | ipolub.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
| 3 | ipolub.s | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐹 ) | |
| 4 | ipoglb.g | ⊢ ( 𝜑 → 𝐺 = ( glb ‘ 𝐼 ) ) | |
| 5 | ipoglbdm.t | ⊢ ( 𝜑 → 𝑇 = ∪ { 𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆 } ) | |
| 6 | ipoglb.t | ⊢ ( 𝜑 → 𝑇 ∈ 𝐹 ) | |
| 7 | eqid | ⊢ ( le ‘ 𝐼 ) = ( le ‘ 𝐼 ) | |
| 8 | 1 | ipobas | ⊢ ( 𝐹 ∈ 𝑉 → 𝐹 = ( Base ‘ 𝐼 ) ) |
| 9 | 2 8 | syl | ⊢ ( 𝜑 → 𝐹 = ( Base ‘ 𝐼 ) ) |
| 10 | 1 | ipopos | ⊢ 𝐼 ∈ Poset |
| 11 | 10 | a1i | ⊢ ( 𝜑 → 𝐼 ∈ Poset ) |
| 12 | breq2 | ⊢ ( 𝑦 = 𝑣 → ( 𝑇 ( le ‘ 𝐼 ) 𝑦 ↔ 𝑇 ( le ‘ 𝐼 ) 𝑣 ) ) | |
| 13 | unilbeu | ⊢ ( 𝑇 ∈ 𝐹 → ( ( 𝑇 ⊆ ∩ 𝑆 ∧ ∀ 𝑧 ∈ 𝐹 ( 𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇 ) ) ↔ 𝑇 = ∪ { 𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆 } ) ) | |
| 14 | 13 | biimpar | ⊢ ( ( 𝑇 ∈ 𝐹 ∧ 𝑇 = ∪ { 𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆 } ) → ( 𝑇 ⊆ ∩ 𝑆 ∧ ∀ 𝑧 ∈ 𝐹 ( 𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇 ) ) ) |
| 15 | 6 5 14 | syl2anc | ⊢ ( 𝜑 → ( 𝑇 ⊆ ∩ 𝑆 ∧ ∀ 𝑧 ∈ 𝐹 ( 𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇 ) ) ) |
| 16 | 1 2 3 7 | ipoglblem | ⊢ ( ( 𝜑 ∧ 𝑇 ∈ 𝐹 ) → ( ( 𝑇 ⊆ ∩ 𝑆 ∧ ∀ 𝑧 ∈ 𝐹 ( 𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇 ) ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑇 ( le ‘ 𝐼 ) 𝑦 ∧ ∀ 𝑧 ∈ 𝐹 ( ∀ 𝑦 ∈ 𝑆 𝑧 ( le ‘ 𝐼 ) 𝑦 → 𝑧 ( le ‘ 𝐼 ) 𝑇 ) ) ) ) |
| 17 | 6 16 | mpdan | ⊢ ( 𝜑 → ( ( 𝑇 ⊆ ∩ 𝑆 ∧ ∀ 𝑧 ∈ 𝐹 ( 𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇 ) ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑇 ( le ‘ 𝐼 ) 𝑦 ∧ ∀ 𝑧 ∈ 𝐹 ( ∀ 𝑦 ∈ 𝑆 𝑧 ( le ‘ 𝐼 ) 𝑦 → 𝑧 ( le ‘ 𝐼 ) 𝑇 ) ) ) ) |
| 18 | 15 17 | mpbid | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝑆 𝑇 ( le ‘ 𝐼 ) 𝑦 ∧ ∀ 𝑧 ∈ 𝐹 ( ∀ 𝑦 ∈ 𝑆 𝑧 ( le ‘ 𝐼 ) 𝑦 → 𝑧 ( le ‘ 𝐼 ) 𝑇 ) ) ) |
| 19 | 18 | simpld | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑆 𝑇 ( le ‘ 𝐼 ) 𝑦 ) |
| 20 | 19 | adantr | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑆 ) → ∀ 𝑦 ∈ 𝑆 𝑇 ( le ‘ 𝐼 ) 𝑦 ) |
| 21 | simpr | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑆 ) → 𝑣 ∈ 𝑆 ) | |
| 22 | 12 20 21 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑆 ) → 𝑇 ( le ‘ 𝐼 ) 𝑣 ) |
| 23 | breq1 | ⊢ ( 𝑧 = 𝑤 → ( 𝑧 ( le ‘ 𝐼 ) 𝑦 ↔ 𝑤 ( le ‘ 𝐼 ) 𝑦 ) ) | |
| 24 | 23 | ralbidv | ⊢ ( 𝑧 = 𝑤 → ( ∀ 𝑦 ∈ 𝑆 𝑧 ( le ‘ 𝐼 ) 𝑦 ↔ ∀ 𝑦 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑦 ) ) |
| 25 | breq2 | ⊢ ( 𝑦 = 𝑣 → ( 𝑤 ( le ‘ 𝐼 ) 𝑦 ↔ 𝑤 ( le ‘ 𝐼 ) 𝑣 ) ) | |
| 26 | 25 | cbvralvw | ⊢ ( ∀ 𝑦 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑦 ↔ ∀ 𝑣 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣 ) |
| 27 | 24 26 | bitrdi | ⊢ ( 𝑧 = 𝑤 → ( ∀ 𝑦 ∈ 𝑆 𝑧 ( le ‘ 𝐼 ) 𝑦 ↔ ∀ 𝑣 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣 ) ) |
| 28 | breq1 | ⊢ ( 𝑧 = 𝑤 → ( 𝑧 ( le ‘ 𝐼 ) 𝑇 ↔ 𝑤 ( le ‘ 𝐼 ) 𝑇 ) ) | |
| 29 | 27 28 | imbi12d | ⊢ ( 𝑧 = 𝑤 → ( ( ∀ 𝑦 ∈ 𝑆 𝑧 ( le ‘ 𝐼 ) 𝑦 → 𝑧 ( le ‘ 𝐼 ) 𝑇 ) ↔ ( ∀ 𝑣 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣 → 𝑤 ( le ‘ 𝐼 ) 𝑇 ) ) ) |
| 30 | 18 | simprd | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐹 ( ∀ 𝑦 ∈ 𝑆 𝑧 ( le ‘ 𝐼 ) 𝑦 → 𝑧 ( le ‘ 𝐼 ) 𝑇 ) ) |
| 31 | 30 | adantr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐹 ) → ∀ 𝑧 ∈ 𝐹 ( ∀ 𝑦 ∈ 𝑆 𝑧 ( le ‘ 𝐼 ) 𝑦 → 𝑧 ( le ‘ 𝐼 ) 𝑇 ) ) |
| 32 | simpr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐹 ) → 𝑤 ∈ 𝐹 ) | |
| 33 | 29 31 32 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐹 ) → ( ∀ 𝑣 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣 → 𝑤 ( le ‘ 𝐼 ) 𝑇 ) ) |
| 34 | 33 | 3impia | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐹 ∧ ∀ 𝑣 ∈ 𝑆 𝑤 ( le ‘ 𝐼 ) 𝑣 ) → 𝑤 ( le ‘ 𝐼 ) 𝑇 ) |
| 35 | 7 9 4 11 3 6 22 34 | posglbdg | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑆 ) = 𝑇 ) |