This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existential uniqueness of the greatest lower bound. (Contributed by Zhi Wang, 29-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unilbeu | ⊢ ( 𝐶 ∈ 𝐵 → ( ( 𝐶 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) ) ↔ 𝐶 = ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 | ⊢ ( 𝑧 = 𝐶 → ( 𝑧 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐴 ) ) | |
| 2 | simpll | ⊢ ( ( ( 𝐶 ∈ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) ) → 𝐶 ∈ 𝐵 ) | |
| 3 | simplr | ⊢ ( ( ( 𝐶 ∈ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) ) → 𝐶 ⊆ 𝐴 ) | |
| 4 | 1 2 3 | elrabd | ⊢ ( ( ( 𝐶 ∈ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) ) → 𝐶 ∈ { 𝑧 ∈ 𝐵 ∣ 𝑧 ⊆ 𝐴 } ) |
| 5 | sseq1 | ⊢ ( 𝑧 = 𝑥 → ( 𝑧 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐴 ) ) | |
| 6 | 5 | cbvrabv | ⊢ { 𝑧 ∈ 𝐵 ∣ 𝑧 ⊆ 𝐴 } = { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } |
| 7 | 4 6 | eleqtrdi | ⊢ ( ( ( 𝐶 ∈ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) ) → 𝐶 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ) |
| 8 | elssuni | ⊢ ( 𝐶 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } → 𝐶 ⊆ ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ) | |
| 9 | 7 8 | syl | ⊢ ( ( ( 𝐶 ∈ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) ) → 𝐶 ⊆ ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ) |
| 10 | unissb | ⊢ ( ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ⊆ 𝐶 ↔ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } 𝑦 ⊆ 𝐶 ) | |
| 11 | sseq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴 ) ) | |
| 12 | 11 | ralrab | ⊢ ( ∀ 𝑦 ∈ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } 𝑦 ⊆ 𝐶 ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) ) |
| 13 | 10 12 | bitri | ⊢ ( ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ⊆ 𝐶 ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) ) |
| 14 | 13 | biimpri | ⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) → ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ⊆ 𝐶 ) |
| 15 | 14 | adantl | ⊢ ( ( ( 𝐶 ∈ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) ) → ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ⊆ 𝐶 ) |
| 16 | 9 15 | eqssd | ⊢ ( ( ( 𝐶 ∈ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) ) → 𝐶 = ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ) |
| 17 | 16 | expl | ⊢ ( 𝐶 ∈ 𝐵 → ( ( 𝐶 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) ) → 𝐶 = ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ) ) |
| 18 | unilbss | ⊢ ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ⊆ 𝐴 | |
| 19 | sseq1 | ⊢ ( 𝐶 = ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } → ( 𝐶 ⊆ 𝐴 ↔ ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ⊆ 𝐴 ) ) | |
| 20 | 18 19 | mpbiri | ⊢ ( 𝐶 = ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } → 𝐶 ⊆ 𝐴 ) |
| 21 | eqimss2 | ⊢ ( 𝐶 = ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } → ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ⊆ 𝐶 ) | |
| 22 | 21 13 | sylib | ⊢ ( 𝐶 = ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } → ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) ) |
| 23 | 20 22 | jca | ⊢ ( 𝐶 = ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } → ( 𝐶 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) ) ) |
| 24 | 17 23 | impbid1 | ⊢ ( 𝐶 ∈ 𝐵 → ( ( 𝐶 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ 𝐶 ) ) ↔ 𝐶 = ∪ { 𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴 } ) ) |