This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The GLB of the inclusion poset. (hypotheses "ipolub.s" and "ipoglb.t" could be eliminated with S e. dom G .) Could be significantly shortened if posglbdg is in quantified form. mrelatglb could potentially be shortened using this. See mrelatglbALT . (Contributed by Zhi Wang, 29-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipolub.i | |- I = ( toInc ` F ) |
|
| ipolub.f | |- ( ph -> F e. V ) |
||
| ipolub.s | |- ( ph -> S C_ F ) |
||
| ipoglb.g | |- ( ph -> G = ( glb ` I ) ) |
||
| ipoglbdm.t | |- ( ph -> T = U. { x e. F | x C_ |^| S } ) |
||
| ipoglb.t | |- ( ph -> T e. F ) |
||
| Assertion | ipoglb | |- ( ph -> ( G ` S ) = T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipolub.i | |- I = ( toInc ` F ) |
|
| 2 | ipolub.f | |- ( ph -> F e. V ) |
|
| 3 | ipolub.s | |- ( ph -> S C_ F ) |
|
| 4 | ipoglb.g | |- ( ph -> G = ( glb ` I ) ) |
|
| 5 | ipoglbdm.t | |- ( ph -> T = U. { x e. F | x C_ |^| S } ) |
|
| 6 | ipoglb.t | |- ( ph -> T e. F ) |
|
| 7 | eqid | |- ( le ` I ) = ( le ` I ) |
|
| 8 | 1 | ipobas | |- ( F e. V -> F = ( Base ` I ) ) |
| 9 | 2 8 | syl | |- ( ph -> F = ( Base ` I ) ) |
| 10 | 1 | ipopos | |- I e. Poset |
| 11 | 10 | a1i | |- ( ph -> I e. Poset ) |
| 12 | breq2 | |- ( y = v -> ( T ( le ` I ) y <-> T ( le ` I ) v ) ) |
|
| 13 | unilbeu | |- ( T e. F -> ( ( T C_ |^| S /\ A. z e. F ( z C_ |^| S -> z C_ T ) ) <-> T = U. { x e. F | x C_ |^| S } ) ) |
|
| 14 | 13 | biimpar | |- ( ( T e. F /\ T = U. { x e. F | x C_ |^| S } ) -> ( T C_ |^| S /\ A. z e. F ( z C_ |^| S -> z C_ T ) ) ) |
| 15 | 6 5 14 | syl2anc | |- ( ph -> ( T C_ |^| S /\ A. z e. F ( z C_ |^| S -> z C_ T ) ) ) |
| 16 | 1 2 3 7 | ipoglblem | |- ( ( ph /\ T e. F ) -> ( ( T C_ |^| S /\ A. z e. F ( z C_ |^| S -> z C_ T ) ) <-> ( A. y e. S T ( le ` I ) y /\ A. z e. F ( A. y e. S z ( le ` I ) y -> z ( le ` I ) T ) ) ) ) |
| 17 | 6 16 | mpdan | |- ( ph -> ( ( T C_ |^| S /\ A. z e. F ( z C_ |^| S -> z C_ T ) ) <-> ( A. y e. S T ( le ` I ) y /\ A. z e. F ( A. y e. S z ( le ` I ) y -> z ( le ` I ) T ) ) ) ) |
| 18 | 15 17 | mpbid | |- ( ph -> ( A. y e. S T ( le ` I ) y /\ A. z e. F ( A. y e. S z ( le ` I ) y -> z ( le ` I ) T ) ) ) |
| 19 | 18 | simpld | |- ( ph -> A. y e. S T ( le ` I ) y ) |
| 20 | 19 | adantr | |- ( ( ph /\ v e. S ) -> A. y e. S T ( le ` I ) y ) |
| 21 | simpr | |- ( ( ph /\ v e. S ) -> v e. S ) |
|
| 22 | 12 20 21 | rspcdva | |- ( ( ph /\ v e. S ) -> T ( le ` I ) v ) |
| 23 | breq1 | |- ( z = w -> ( z ( le ` I ) y <-> w ( le ` I ) y ) ) |
|
| 24 | 23 | ralbidv | |- ( z = w -> ( A. y e. S z ( le ` I ) y <-> A. y e. S w ( le ` I ) y ) ) |
| 25 | breq2 | |- ( y = v -> ( w ( le ` I ) y <-> w ( le ` I ) v ) ) |
|
| 26 | 25 | cbvralvw | |- ( A. y e. S w ( le ` I ) y <-> A. v e. S w ( le ` I ) v ) |
| 27 | 24 26 | bitrdi | |- ( z = w -> ( A. y e. S z ( le ` I ) y <-> A. v e. S w ( le ` I ) v ) ) |
| 28 | breq1 | |- ( z = w -> ( z ( le ` I ) T <-> w ( le ` I ) T ) ) |
|
| 29 | 27 28 | imbi12d | |- ( z = w -> ( ( A. y e. S z ( le ` I ) y -> z ( le ` I ) T ) <-> ( A. v e. S w ( le ` I ) v -> w ( le ` I ) T ) ) ) |
| 30 | 18 | simprd | |- ( ph -> A. z e. F ( A. y e. S z ( le ` I ) y -> z ( le ` I ) T ) ) |
| 31 | 30 | adantr | |- ( ( ph /\ w e. F ) -> A. z e. F ( A. y e. S z ( le ` I ) y -> z ( le ` I ) T ) ) |
| 32 | simpr | |- ( ( ph /\ w e. F ) -> w e. F ) |
|
| 33 | 29 31 32 | rspcdva | |- ( ( ph /\ w e. F ) -> ( A. v e. S w ( le ` I ) v -> w ( le ` I ) T ) ) |
| 34 | 33 | 3impia | |- ( ( ph /\ w e. F /\ A. v e. S w ( le ` I ) v ) -> w ( le ` I ) T ) |
| 35 | 7 9 4 11 3 6 22 34 | posglbdg | |- ( ph -> ( G ` S ) = T ) |