This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ipoglbdm and ipoglb . (Contributed by Zhi Wang, 29-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipolub.i | ⊢ 𝐼 = ( toInc ‘ 𝐹 ) | |
| ipolub.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | ||
| ipolub.s | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐹 ) | ||
| ipoglblem.l | ⊢ ≤ = ( le ‘ 𝐼 ) | ||
| Assertion | ipoglblem | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) → ( ( 𝑋 ⊆ ∩ 𝑆 ∧ ∀ 𝑧 ∈ 𝐹 ( 𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑋 ) ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑋 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐹 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑋 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipolub.i | ⊢ 𝐼 = ( toInc ‘ 𝐹 ) | |
| 2 | ipolub.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
| 3 | ipolub.s | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐹 ) | |
| 4 | ipoglblem.l | ⊢ ≤ = ( le ‘ 𝐼 ) | |
| 5 | ssint | ⊢ ( 𝑋 ⊆ ∩ 𝑆 ↔ ∀ 𝑦 ∈ 𝑆 𝑋 ⊆ 𝑦 ) | |
| 6 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) ∧ 𝑦 ∈ 𝑆 ) → 𝐹 ∈ 𝑉 ) |
| 7 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑋 ∈ 𝐹 ) | |
| 8 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑆 ⊆ 𝐹 ) |
| 9 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝑆 ) | |
| 10 | 8 9 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝐹 ) |
| 11 | 1 4 | ipole | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) → ( 𝑋 ≤ 𝑦 ↔ 𝑋 ⊆ 𝑦 ) ) |
| 12 | 6 7 10 11 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑋 ≤ 𝑦 ↔ 𝑋 ⊆ 𝑦 ) ) |
| 13 | 12 | ralbidva | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) → ( ∀ 𝑦 ∈ 𝑆 𝑋 ≤ 𝑦 ↔ ∀ 𝑦 ∈ 𝑆 𝑋 ⊆ 𝑦 ) ) |
| 14 | 5 13 | bitr4id | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) → ( 𝑋 ⊆ ∩ 𝑆 ↔ ∀ 𝑦 ∈ 𝑆 𝑋 ≤ 𝑦 ) ) |
| 15 | ssint | ⊢ ( 𝑧 ⊆ ∩ 𝑆 ↔ ∀ 𝑦 ∈ 𝑆 𝑧 ⊆ 𝑦 ) | |
| 16 | 6 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) ∧ 𝑧 ∈ 𝐹 ) ∧ 𝑦 ∈ 𝑆 ) → 𝐹 ∈ 𝑉 ) |
| 17 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) ∧ 𝑧 ∈ 𝐹 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑧 ∈ 𝐹 ) | |
| 18 | 10 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) ∧ 𝑧 ∈ 𝐹 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝐹 ) |
| 19 | 1 4 | ipole | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑧 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) → ( 𝑧 ≤ 𝑦 ↔ 𝑧 ⊆ 𝑦 ) ) |
| 20 | 16 17 18 19 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) ∧ 𝑧 ∈ 𝐹 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑧 ≤ 𝑦 ↔ 𝑧 ⊆ 𝑦 ) ) |
| 21 | 20 | ralbidva | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) ∧ 𝑧 ∈ 𝐹 ) → ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 ↔ ∀ 𝑦 ∈ 𝑆 𝑧 ⊆ 𝑦 ) ) |
| 22 | 15 21 | bitr4id | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) ∧ 𝑧 ∈ 𝐹 ) → ( 𝑧 ⊆ ∩ 𝑆 ↔ ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 ) ) |
| 23 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) ∧ 𝑧 ∈ 𝐹 ) → 𝐹 ∈ 𝑉 ) |
| 24 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) ∧ 𝑧 ∈ 𝐹 ) → 𝑧 ∈ 𝐹 ) | |
| 25 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) ∧ 𝑧 ∈ 𝐹 ) → 𝑋 ∈ 𝐹 ) | |
| 26 | 1 4 | ipole | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑧 ∈ 𝐹 ∧ 𝑋 ∈ 𝐹 ) → ( 𝑧 ≤ 𝑋 ↔ 𝑧 ⊆ 𝑋 ) ) |
| 27 | 23 24 25 26 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) ∧ 𝑧 ∈ 𝐹 ) → ( 𝑧 ≤ 𝑋 ↔ 𝑧 ⊆ 𝑋 ) ) |
| 28 | 27 | bicomd | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) ∧ 𝑧 ∈ 𝐹 ) → ( 𝑧 ⊆ 𝑋 ↔ 𝑧 ≤ 𝑋 ) ) |
| 29 | 22 28 | imbi12d | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) ∧ 𝑧 ∈ 𝐹 ) → ( ( 𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑋 ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑋 ) ) ) |
| 30 | 29 | ralbidva | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) → ( ∀ 𝑧 ∈ 𝐹 ( 𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑋 ) ↔ ∀ 𝑧 ∈ 𝐹 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑋 ) ) ) |
| 31 | 14 30 | anbi12d | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐹 ) → ( ( 𝑋 ⊆ ∩ 𝑆 ∧ ∀ 𝑧 ∈ 𝐹 ( 𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑋 ) ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑋 ≤ 𝑦 ∧ ∀ 𝑧 ∈ 𝐹 ( ∀ 𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑋 ) ) ) ) |